Üleminen kliimaneutraalsele elektritootmisele

8. aruanne:
lõppparuanne
Lepingü üksikasjad
Euroopa Komisjon - struktuurileformide toe peadirektoraat
Üleminek kliimaneutraalsele elektritootmisele
REFORM/SC2020/068

Esitaja
Trinomics B.V.
Westersingel 34
3014 GS, Rotterdam
Madalmaad

Kontaktisik
Koen Rademaekers
T: +31 6 2272 5505
E: koen.rademaekers@trinomics.eu

Kuupäev
13. oktoober 2022

Kinnitus
Siinne uuring tehti Euroopa Liidu rahastamisel struktuurileformi tugiprogrammi kaudu ja koostöös Euroopa Komisjoni struktuurileformide toe peadirektoraadiga.

Vastutuse välistamine
Selles aruanedes väljendatud seisukohad on üksnes autorite omad ja neid ei saa mingil juhul pidada struktuurileformide toe peadirektoraadi või Euroopa Komisjoni ametlikuks seisukohaks.
Rotterdam, 13. oktoober 2022

Klient: Euroopa Komisjon - struktuurireformide toe peadirektorat
REFORM/SC2020/068

Üleminek kliimaneutraalsele elektritootmisele

Koen Rademaekers - Trinomics
Matthew Smith - Trinomics
Andrea Demurtas - Trinomics
Nora Cheikh - Trinomics
Lauri Tammiste - SEI
Jason Veysey - SEI
Silvia Ulloa - SEI
Hardi Koduvere - TalTech
Ioannis Charalampidis - E3M
Leonidas Paroussos - E3M

Koostöös:
SISUKORD

Sissejuhatus ......................................................................................................................... 6

Kokkuvõte ............................................................................................................................. 7

- Eesti elektritootmise stsenaariumid ...................................................................................... 7
- Tehnoloogia arendamine ja vajalikud investeeringud ............................................................. 10
- Stsenaariumi valik .................................................................................................................. 10
- Esmatähtsad tegevused .......................................................................................................... 12

1 Projekti tegevused ja tulemused ........................................................................................ 13

1.1 Kolmas aruanne: Stsenaariumide modelleerimine ............................................................... 13

1.2 Neljas aruanne: sotsiaalmajandusliku mõju analüüs .......................................................... 15

1.3 Viies aruanne: riskianalüüs ............................................................................................... 17

1.4 Kuues aruanne: tundlikkusanalüüs ................................................................................... 19

1.5 Seitsmes aruanne: tegevuskavad ....................................................................................... 23

1.5.1 Võtmetegevused stsenaariumi tasandil ......................................................................... 25

1.5.2 Soovitataavad meetmed ebasoodsa mõju vähendamiseks ja soodsast mõju suurendamiseks ...................................................................................................................... 26

2 Lõpparuanne: Peamised tulemused ja järeldused ................................................................. 28

2.1 Kokkuvõtlik hinnang ............................................................................................................. 28

2.2 Peamised järeldused ............................................................................................................ 29

2.2.1 Tehnoloogia arendamine ................................................................................................. 30

2.2.2 Poliitika tegevused ........................................................................................................ 31

2.2.3 Vajalikud investeeringud tehnoloogiatesse ja politikameetmetesse ................................. 31

2.2.4 Nõuanded stsenaariumide kohta .................................................................................... 32

2.3 Soovitused .......................................................................................................................... 33

2.4 Õppetunnid tulevaste projektide jaoks teistes EL-i liikmesriikides ...................................... 35

3 Vastused uurimisküsimustele .................................................................................................. 37

4 Seireindikaatorid .................................................................................................................... 43

4.1 Peamised suundumused ja indikaatorid ............................................................................. 43

4.1.1 Seminaride ülevaade ...................................................................................................... 43

4.1.2 Intervjuude ülevaade .................................................................................................... 43
4.2 Tulemuste jälgimine................................................................. 44
4.3 Tulemusindikaatorid.............................................................. 44
5 Peamised väljakutsed ............................................................... 46
6 Lisad: projekti aruanded ja Exceli failid.................................. 47
Sissejuhatus


Aruanne koosneb järgmistest osadest:

- kokkuvõte;
- projekti tegevused ja tulemused;
- vastused uurimisküsimustele;
- saadud kogemused ja soovitused;
- ülevaade seirenäitajatest;
- ülevaade peamistest raskustest;
- lisad.
Kokkuvõte


Eesti elektritootmise stsenaaariumid

Uuringus vaadeldi võrdlusstsenaariumi ehk seniste trendide jätkumist ja seitset kliimaneutraalset stsenaaariumi, mille peamised tunnused on kokku võetud tabelis 0-1.

Tabel 0-1. Stsenaaariumid ja nende peamised tunnused

<table>
<thead>
<tr>
<th>Stsenaaarium</th>
<th>Peamised tunnused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Võrdlusstsenaaarium</td>
<td>- tänaste trendide jätkumine (BAU), aga ilma Euroopa Komisjoni 2020. aasta võrdlusstsenaaariumis eeldatud võimsuste kasvuta naaberriikides² - Hõlmab nõudlust majanduslikult kulutõhusate kulutööhuse leevendusest, kui seda mahutavale kiirele tehnoloogiakesknerile eeldab investeeringut mõnda antud stsenaaariumis keskel kohal olevasse vähese süsinikuheitega tehnoloogiase, kusjuures lisainvesteeringud on lubatud kõikides ülejäänud salvestamis- ja taastuvenergia tootmise tehnoloogiasesse (nt maismaa tuuleenergia, päikeseenergia, Paldiski pump-hüdroenergiatajama, akupatareid).</td>
</tr>
<tr>
<td>Taastuvenergia ja salvestus (avamere tuuleenergia)</td>
<td>- Eestisse paigaldatud avamere tuuleenergia generaatorite võimsused on 1 GW aastaks 2030, 2 GW aastaks 2035, 3 GW aastaks 2040 ja 4 GW aastaks 2050.</td>
</tr>
<tr>
<td>Tuumaenergia</td>
<td>- 2040. aastaks on Eestisse ehitatud viie + põlvkonna modularne tuumareaktor, mille võimsus on 900 MW.</td>
</tr>
</tbody>
</table>


3 Power to x tähendab võrgu ülejääva taastuvalt elektri muundamist kas gaasiks, vedelkütuseks või soojaks (Nd elektrist vesiniku tootmine või soojuspumpade abil toodetud soosa salvestamine).
Süsiniku püüdmine ja kasutamine (CCU) - TG11 põlevkivijaamad saavad süsiniku püüdmise võimekuse 2025., Auvere põlevkivijaamad 2030. aastal.

Taastuvgaas - 2030. aastaks on Eestisse rajatud 1 GW mahus biogaasi võimsusi.

Kõik tehnoloogiad - Lubatud on investeerida kõikidesse vähese süsinikuheitega tehnoloogiatesse. - Impordite või võimsuste lisandumisele ei ole seatud lisapiiranguid.

1000 MW juhitav võimsus - Lubatud on investeerida kõikidesse vähese süsinikuheitega tehnoloogiatesse. - Eestis on kogu analüüsitud perioodil olemas vähemalt 1000 MW juhitavat võimsust.

Kõik tehnoloogiad ilma netoimporditeta - Lubatud on investeerida kõikidesse vähese süsinikuheitega tehnoloogiatesse. - Elektri import ja eksport on igal aastal tasakaalus.

| Tabelis 0-2 on esitatud stsenaariumide põhitulemused, mis puudutavad võimsust, tootmist, hindu ja kasvuhoonegaaside heitid. |
Tabel 0-2. Stsenaariumide põhitulemused

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Võimsus</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAU</td>
<td>2667</td>
<td>763</td>
<td>98</td>
<td>187</td>
</tr>
<tr>
<td>Taastuvenergia ja salvestus</td>
<td>2667</td>
<td>782</td>
<td>84</td>
<td>79</td>
</tr>
<tr>
<td>Tuumaenergia</td>
<td>2667</td>
<td>754</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Süsini puüdmise ja kasutamine (CCU)</td>
<td>2667</td>
<td>493</td>
<td>-136</td>
<td>-147</td>
</tr>
<tr>
<td>Taastuvgaas</td>
<td>2667</td>
<td>728</td>
<td>77</td>
<td>68</td>
</tr>
<tr>
<td>Kõik tehnoloogiad</td>
<td>2667</td>
<td>722</td>
<td>77</td>
<td>167</td>
</tr>
<tr>
<td>Kõik tehnoloogiad 1000 MW</td>
<td>2667</td>
<td>787</td>
<td>213</td>
<td>199</td>
</tr>
<tr>
<td>Kõik tehnoloogiad ilma netoimpordita</td>
<td>2667</td>
<td>766</td>
<td>784</td>
<td>324</td>
</tr>
<tr>
<td><strong>Kumulatiivne kogus</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAU</td>
<td>24 306</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taastuvenergia ja salvestus</td>
<td>23 761</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuumaenergia</td>
<td>22 780</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Süsini puüdmise ja kasutamine (CCU)</td>
<td>17 430</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taastuvgaas</td>
<td>23 092</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kõik tehnoloogiad</td>
<td>23 572</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kõik tehnoloogiad 1000 MW</td>
<td>25 764</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kõik tehnoloogiad ilma netoimpordita</td>
<td>31 950</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Kõigis stsenaariumides peale süsiniku puüdmise ja kasutamise viiaakse põlevkivitehased 2030. aastatel üle biomassile.
Muude analüüsi puudutavate oluliste eelduste hulgas on ka eeldused ELi heitkogustega kauplemise süsteemi (HKS) hindade ja elektritarbimise kohta aastani 2050. Need on ära toodud tabelis 0-3.

**Tabel 0-3. Peamised stsenaariumide modelleerimise eeldused**

<table>
<thead>
<tr>
<th>Eeldus</th>
<th>2030</th>
<th>2035</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELi HKSi hinnaeeldus (€/t CO₂)</td>
<td>50</td>
<td>55</td>
<td>80</td>
<td>159</td>
</tr>
<tr>
<td>Eesti elektritarbimine (TWh)</td>
<td>11,30</td>
<td>12,17</td>
<td>13,04</td>
<td>16,03</td>
</tr>
</tbody>
</table>

**Tehnoloogia arendamine ja vajalikud investeeringud**


**Stsenariiumi valik**

Allpool olev tabel 0-4 vötab kokku stsenariiumide võrdleva hindamise tulemused. Stsenariiume vörreldi kahe alternatiivse kriteeriumikomplekti alusel (kasutatud metoodika on põhjalikumalt kirjeldatud aruande osas 2.1). Esimese kriteeriumikomplekti kohaselt on elluviimise kulude, kasude, riskide ja teostatavuse mõõtes parimad stsenariiumid „Kõik tehnoloogiad“ ja „Taastuvenergia ja salvestus (avamere tuuleenergia)“. Samuti saab nende kriteeriumite lõikes võrdlemis kõrge hinde stsenarium „Taastuvgaas“. Samas tuleks positiivsete mõjude tagamiseks selles stsenariiumis esialgsetel eeldatud 1GW asemel rajada biogaasil töötavad tootmisvõimsus väiksemas mahus, kuna mudel näitab, et suurte tegevuskulude tööttu toodaksid biogaasi võimsused vähe elektrit (ning seeläbi väheneks tegelikus keskmise osas). Teise kriteeriumikomplekti (5) kohaselt on kõige atraktiivsemad stsenariiumid „Tuumaenergia“, „Taastuvenergia ja salvestus (avamere tuuleenergia)“ ja „Kõik tehnoloogiad“. Pannes kokku nende kahe hindamise tulemused, oleks kokkuvõttes kõige paremad stsenariiumid „Taastuvenergia ja salvestus (avamere tuuleenergia)“ ja „Kõik tehnoloogiad“.

---

4 mis oli laiapõhjalise ja sisaldas 12 erinevat parameetrit, nt sotsiaalpartnerite eelistusi, elluviimisega seotud riske, sotsiaal-majanduslikku kasu, finantskulu ja keskkonnakompleksi

5 mis oli kitsam ja sisaldas 5 majanduslikku mõju iseloomustavat parameetrit

**Tabel 0-4. Kokkuvõtlik hinnang stsenariuidele**

<table>
<thead>
<tr>
<th>Konsultandili hinnang6</th>
<th>Alternatiivne pingerida**</th>
<th>Hinnang ja põhimeetmed</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Taastuvenergia ja salvestus</em></td>
<td>Soovitatav</td>
<td>2</td>
</tr>
<tr>
<td>See on kõige ambitsoonikam stsenariu, mis näeb ette avamere tuuleenergia ja salvestusteholoogiate suuremahulisel kasutuselevõttu ning millega kaasnevad suurimad investeeringute maihod nii tootmisvõimsustest kiirendada osas. Investeeringud avaldavad siiski positiivset majanduslikku mõju ja avamere tuuleenergia ulatusliku kasutuselevõtuga kaasnevaid keskkonnahooldusi on võimalik pirata. Stsenariu mik rakendamiseks on vaja keskendumata avamere tuuleenergia kasutuselevõtu hõmbustamisele (taastuvenergia-spetsifilise) toetus; võrgu arendamine; ülekandevõimsuste loomine), salvestuslahenduste kasutuselevõtust toetamisele ja haavatavate tarbijate kaitsmisele energiaarvete võimaliku suurenemise eest.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Taastuvgaas</em></td>
<td>Soovitatav</td>
<td>4</td>
</tr>
<tr>
<td><em>Kõik teholoogiad</em></td>
<td>Soovitatav</td>
<td>2</td>
</tr>
<tr>
<td>See on põhisteenuskond teho- ja energetiitehnoloogiate kasutamise eest. See näitab, et taastuvenergia kasutamine võimaldab keskkonna ja inimeste oilyks ning see on võimaliklikud koos kogu Eesti kasutuselevõtuse võimaliku suurenemise eest.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Netoimpordita stsenariuüm</em></td>
<td>Elluviidav</td>
<td>6</td>
</tr>
<tr>
<td>Nende kahe stsenariuumi, mis põhinevad kõigike teholoogiate konkurentsil, tulemustes on tootmisportfulli (tuule-, pääseseer, akusalvestuse jmt osas), milles kulud ja juhitavate võimsustes õhukavamine on suure osas samas. Erinevate eeldustest on planeeritud tasakaalustatud tehnoloogiatotusest, mis võimaldab kasutuselevõtmist viie ja üheksasekond.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>1000 MW juhitav võimsus</em></td>
<td>Elluviidav</td>
<td>5</td>
</tr>
<tr>
<td>Seda stsenariuumi tõlgendamine tuuma- ja pääseseeriel. See on investeeringute hõlmamisevõimsust on kaheksas 2050. aastal oodata kõige suuremaks naudiks. Seetõttu võimaldab selline stsenariuüm eelnevalt kasutusel kasulikumaks kasutatma.</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Tuumaenergia</em></td>
<td>Ei soovita</td>
<td>1</td>
</tr>
<tr>
<td>Seda stsenariuumit iseloomustab keskkonnakaitse keematega ja puudutavate ekoloomustuse eest. Stsenariuüm on planeeritud kasutussaadavamaks teha elektrienergiatootmise ja elektrituntuse ühendust kasutades. See on sellest kohe võimalik, et tuumaenergia kasutamine suurendab keskkonnakaitset.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Märkus:**

1. *kasutuslevõttu*
2. *kuivõrd*
3. *kõik*
4. *kuivõrd*
5. *kuivõrd*
6. kus ei eeldatud ühe spetsifilise tehnooloogia nagu tuumaenergia, biogas ja eelmist teatud määratud mahuga kasutuselevõttu
7. nt 1000MW juhitavate võimsustest stsenariuümil eeliselt muid lisata tootmisportfelli kas ca 400 MW pumphüdro võimsus, samas kui „Kõik teholoogiad ilma netoimpordita”; puhul eelistab muid lisata taastuvenergia- ja salvestusvõimsustest kõrvalt tootmisportfelli 300MW tuumaenergiavõimsus
8. seda juhul, kui tuumajaamad töötavad 65-70% koormusteguriga
Puudub Eestis ajalugu ja mida eeldatavasti ei saa kasutusele võtta enne 2035. aastat.

<table>
<thead>
<tr>
<th>Süsiniку püüdmine ja kasutamine</th>
<th>Ei soovita</th>
<th>7</th>
</tr>
</thead>
</table>
| See stsenaarium nõuab kõige vähem usi investeeringuid ja jätakab kodumaist fossilikutust kasutamist pikemas perspektiivis, vähenedes sellegipoolest umbes veerandini võrreldes täna põlevkivi kasutamisega. Kuigi selle stsenaariumi ellu rakendamine on lihtsam ja nõuab vähem täiendavaid meetmeid, on teisalt see stsenaarium majanduse ja tööhõive seisukohast ilmselt kõige halvem ning jätaks Eesti tulevikus kõige rohkem sõltuvaks elektri impordist. Süsiniku püüdmine ja kasutamine võiks olia Eesti jaoks attraktivsem valik, kui teitakse CO₂ edasised kasutus- ja transpordi võimalused, nii et süsiniku püüdmist saaks rakendada ka teistest elektrijaamades ja tööstusettevõtete võrreldes tänase põlevkivi kasutamisega ning kui süsiniku püüdmise ja kasutamise kulud olis võimalik vähendada, mida avaldab mõneduks konkurentsivõimeks.

*põhineb 12 kriteeriumil, mis on keskkonna-, majandusmõjusid, elluviimisega seotud riske, valdkonna sotsiaalpartnerite eelistusi

**Põhineb viiel kriteeriumil: investeerimiskulud, elektrihinnad 2050. aastal, SKP, töökohtade loomine ja kodumaise tootmise osakaal 2050. aastal.

**Esmatähtsad tegevused**

Järgnevad tegevused on kõikides stsenaariumites nende edukaks elluviimiseks vajalikud:

1. planeerimisprotsessi lihtsustamine;
2. taastuvenergiasse või vähesesse süsinikuheitesse tehtavate investeeringute toetamine;
3. elektrisüsteemi tasakaalustamisturu arendamine, et soodustada investeeringuid paindlikkus -teenusteks sobivatesse tehnoloogiatesse;
4. ülekandevõrgu tugevdamine (kuigi analüüs ei hinnanud jaotusvõrgu tugevdamist, on sedagi suure tõenäosusega vaja teha).
1 Projekti tegevused ja tulemused


Joonis 1-1. Projekti tegevused

1.1 Kolmas aruanne: Stsenaariumide modeleerimine


Elektritarbimise modelleerimine on jalutatud Eesti suuremate majandussektorite või tarbijate kaupa, sh elamusektor, põllumajandus, mäetööstus ja töötlev tööstus, ehitus, muu tööstus, jaekaubandus ja

9 Koostati 8 aruannet: 1) lähteraport 2) alusandmete kogum 3) stsenaariumide modeleerimine 4) sotsiaalmajandusliku mõju analüüs 5) riskianalüüs 6) tundlikkusanalüüs 7) tegevuskavad 8) lõpparuanne
teenused ning transport\textsuperscript{10}. Muudes piirkondades prognoositakse elektrienergia lõpptarbimist ilma sektoriteks jaotamata. Kõigis piirkondades on arvesse võetud elektritootjate enda elektritarbimise vahenõudlust, samuti kadusid elektri ülekande- ja jaotusvõrkudes.

Elektritarbimist mõjutab ka vesiniku tootmine. She arvesse võttes modeleeriti nõudlust vesiniku tootmiseks majanduslikult otstarbekas ja tasuvas mahus ning eeldati, et Eesti 2050. aastal on 160 kt vesiniku tootmiseks vaja 4,1 TWh süsinikuvaba elektrit.

Pakkumise poolel käsitleb mudel kõiki suuremaid elektritootmis- ja salvestusjaam Eestis (nt Auvere põlevkivielektrijaama ja Paldiskisse kavandatav pumphüdroakumulatsioonijaama\textsuperscript{11}) jaamade kaupa detailsetelt. Ülejäänud elektritootmis- ja -salvestusvõimsused nii Eestis kui ka muudes piirkondades on käsitletud agregeeritult tehnoloogiate kaupa. Samuti simuleeriti kõrgepinge ülekandevõimsuse modellitud piirkondade vahel ning kolmandate riikide (st uuuringupiirkondast välja poole jäävate riikide) vahel. Piirkondade vahelised ülekandevõimsusi modeleeriti agregeeritult, mitte iga ülekandelinki kaupa.

Modeleerimisel oli peamiseks lähemamiseks vähima kulu meetod. Arvestades elektrinõudluse prognoosi ja stsenaariumides kohaldatud piiranguid, leiab mudel iga stsenaariumi puhul soodsaima tootmisportfelli, mis minimeerib kogu süsteemi diskonneeritud elektritootmiskulud.

Esialgsed modeleerimistulemused\textsuperscript{12} näitavad, et kõigi kliimaneutraalse tundlikumuse valdkonst返还t kasutamine on liiga mitmekesine ja peab olema see mõõdetav ja analüüsi võimalik. Kliima- ja energiasuvel tuleb mõjutada kõiki strateegiaeasukohtade ja piirangude hulka.

Elektritootmine (nõudlus) on 2020. aastaks 10,3 TWh, 2030. aastaks 11,3 TWh, 2040. aastaks 13,0 TWh ja 2050. aastal 16,0 TWh. Jäotus s ektorite kaupa on esitatud joonisel 3.-

Täielik nimekiri on esitatud väljundi D3 lisas D.

\textsuperscript{10} Elektritarbimise (nõudlus) on 2020. aastaks 10,3 TWh, 2030. aastaks 11,3 TWh, 2040. aastaks 13,0 ja 2050. aastal 16,0 TWh. Jäotus s ektorite kaupa on esitatud joonisel 3.-

\textsuperscript{11} Töös modeleeriti ligikaudu 50 elektritaja, üksust või tehnoloogiat, sh nii praeguseid kui ka potentsiaalseid uusi jaama. Tiitelik nimik on esitatud väljundil D3 lisas D.

\textsuperscript{12} Ouline on märkida, et tundlikku analüüsiss testitud alternatiivsete tuulekõveratega korrigeeritud tulemusi kasutatakse lõpptulemustena tegevuska (seitsmes väljund) koostamiseks.

\textsuperscript{13} Kõigi stsenaariumide korral moodustab akusalvestus aastatel 2030 ja 2050 üle 90% kogu salvestusmahust.
tuuleenergia kasutusele peaaegu kõigis kliimaneutraalsetes stsenaariumides (mõnel juhul 2030. või 2040. aastaks, mõnel juhul alles 2050. aastaks). Eesti avamere tuuleenergia kasutamiseks on vaja investeerida ülekandeliinude rajamisse ja tugevdamisse (töenäoliselt vahemikus 600-1300 MW Lääne-Eesti ja muude piirkondade vahel).

Hilisem tundlikkuseanalüüs näitas, et stsenaariumide modelleerimisel oleks parem kasutada alternatiivseid tuulekõveraid14 võrreldes esialgsest modelleerimise aluseks olnud eeldustega. Seetõttu said esimeses tundlikkusanalüüsides (S1) testitud tuulekõverad aluseks kõikide stsenaariumide peamiste tulemuste ümberarvutamisele.


Joonis 1-2. Prognoositavad võimsused stsenaariumide kaupa (S1), Eesti 205015

* Aastaks 2050 viiakse endised põlevkivielektrijaamad täielikult üle biomassile, välja arvatud juhul, kui need on varustatud süsiniku püüdmise ja kasutamise (CCU) seadmetega ( lubatud ainult süsiniku püüdmise ja kasutamise ning kõigi tehnoloogiate stsenaariumis).

1.2 Neljas aruanne: sotsiaalmajandusliku mõju analüüs

14 Tuulekõver (ingl k wind availability curve) tähistab tuulegeneraatorite töötamise jaoks sobilikku tuulekiiruste vahemiku.

15 Stsenaariumide nimed: reference=võrdlus, renewables+storage=taastuvenergia ja salvestus, nuclear=tuumaenergia, CCU=süsiniku püüdmine ja kasutamine, Renewable gas-taastuvgaas, all technologies=õhus tehnoloogiad, 1000MW dispatchables=õks tehnoloogiad 1000MW, no net imports=õks tehnoloogiad ilma netoinporditatu. Tootmis(tehnoloogiad: pump hydro=pumphüdro, hydro=hüdro, fossil gas=maagaas, waste=jäätmed, other renewables=teised taastuvenergia allikad, DSM=tarbimise juhtimine, oil shale=põlevkivi, nuclear=tuumaenergia, Offshore wind=meretuuleenergia, onshore wind=maismaatuuleenergia, solar PV-päikeseelekter, batteries=akud

Sotsiaalmajandusliku mõju modelleeriti mitmel eri viisil ja eri rahastamistingimustega arvestades. Lähtepunktiks oli energiasüsteemi tehtud investeeringud, mille mahtu kajastada tabelis 1-1. Sellest nähtud, et investeeringuvajadus on suurim taastuvenergia ja salvestuse, tuumaenergia ning taastuvgaasi stsenaariumi korral, väikseim aga süsiniku püüdmise ja kasutamise korral.

<table>
<thead>
<tr>
<th>Tabel 1-1. Eri stsenaariumide investeeringumahud, sh kapitalikulu ja intressimaksed (miljonites eurodes)</th>
<th>Tundlikkusa analüüs</th>
<th>Investeeringutud kapital</th>
<th>Intressimaksed</th>
<th>Kokku kulud aastani 2050</th>
<th>Pärast 2050. a tuleb maksta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Võrdlusstsenaarium</td>
<td>S1</td>
<td>6884</td>
<td>2027</td>
<td>8911</td>
<td>3295</td>
</tr>
<tr>
<td>Kõik tehnoloogiad</td>
<td>S1</td>
<td>6972</td>
<td>2053</td>
<td>9025</td>
<td>3327</td>
</tr>
<tr>
<td>Kõik tehnoloogiad 1000 MW</td>
<td>S1</td>
<td>7623</td>
<td>2245</td>
<td>9868</td>
<td>3311</td>
</tr>
<tr>
<td>Kõik tehnoloogiad ilma netoimpordita</td>
<td>S1</td>
<td>8075</td>
<td>2379</td>
<td>10 454</td>
<td>2540</td>
</tr>
<tr>
<td>Taastuvenergia ja salvestus</td>
<td>S1</td>
<td>11 040</td>
<td>3253</td>
<td>14 293</td>
<td>2182</td>
</tr>
<tr>
<td>Taastuvgaas</td>
<td>S1</td>
<td>8942</td>
<td>2635</td>
<td>11 577</td>
<td>2983</td>
</tr>
<tr>
<td>Tuumaenergia</td>
<td>S1</td>
<td>9338</td>
<td>2751</td>
<td>12 089</td>
<td>3193</td>
</tr>
<tr>
<td>Süsiniku püüdmine ja kasutamine (CCU)</td>
<td>S1</td>
<td>3065</td>
<td>901</td>
<td>3966</td>
<td>344</td>
</tr>
</tbody>
</table>

Joonis 1-3. Eri stsenaariumide makromajanduslik mõju (nõudluse ja hinna mõju), kumulatiivne SKP (2025-2050, S1 tulemuste põhjal)

Tööhõive muutused järgivad SKP mõjuga sarnast mustrit (positiivsema SKP mõjuga kaasneb enamasti positiivsem mõju hõivele). Tuumaenergia stsenaariumi rakendamise korral suureneb tööhõive +0,4% võrreldes võrdustsenaariumiga, süsineku püüdmise ja kasutamise stsenaariumi korral tööhõive hoopis väheneks 0,3%. Ülejäänud stsenaariumide puhul jääb tööhõive muutus nende kahe taseme vahele. Tööhõive kasv on suurim madalama kvalifikatsiooniga kutsealadel, eriti ehituses ja teeninduses.

Kodumajapidamiste sissetulekute analüüs näitas, et kõige paremini mõjuvad sissetulekutele taastuvenergia ja salvestuse, tuumaenergia ning taastuvgaasi stsenaariumid, eelkõige tänu sellele, et lisainvesteeringud mõjutavad positiivselt palkasid. Süsiniku püüdmise ja kasutamise stsenaariumi ellu rakendamise lühiajaline mõju on soodne (kuna elektri hind püsib esialgu madal), kuid muutub pärast 2035. aastat ebasoodsaks, kuna võrreldes teiste stsenaariumitega tehakse vähem uusi investeeringuid. Kõigi tehnoloogiate stsenaariumidel on sissetulekule väike mõju.

Üldiselt on parimate sotsiaalmajanduslike mõjudega tuumaenergia, taastuvgaasi, kõigi tehnoloogiate ilma netoimpordita ning taastuvenergia ja salvestuse stsenaariumid. Halvimate tulemustega on süsineku püüdmise ja kasutamise stsenaarium. Tundlikkusanalüüs näitas, et taastuvenergia ja salvestuse sotsiaalmajanduslikku mõju saab parandada, kui suudetakse piirata suurte investeeringutega kaasnevOOT hinnatõusu, samas kui tuumaenergia puhul sõltub positiivne sotsiaalmajanduslik mõju sellest, kas tuumaenergiat hakatakse tootma 65-70%-lise või 90%-lise koormusteguriga.

1.3 Viies aruanne: riskianalüüs
Viies aruanne keskendus peamistele riskidele, mis võivad stsenaariumide edukat elluviimist takistada. Analüüs käsitles viite riskivaldkonda: regulatiivsed, tehnoloogilised, sotsiaalsete ja keskkondlikud, energiaturu ning majandusriskid. Riskide üldine analüüs on kokku võetud viiandas aruandes, iga stsenaariumi spetsifilisi riske on aga detailsemal kirjeldatud seitsmendas aruandes.

Analüüsi eesmärk oli hinnata huvirühmade arusaama nimetatud riskidest ja seda, kuidas need riskid võivad eri stsenaariumide elluviimist mõjutada. Selleks kasutati küsimustikku, milles esitati avatud küsimusi ja paluti vastajail hinnata eri riskide tõenäosust ja taset iga stsenaariumi puhul.

Huvirühmad peavad kõige riskantsemaks tuumaenergiat (keskmise või kõrge riskitasemega), kõige vähem riskantseks aga taastuvgaasi stsenaariumi (ehkki selle riskitase on ainult pisut madalam võrreldes kõigi ülejäänutega). Riskikategoriele antud keskmise riskitase nn (tabelis 1-2) võimaldab hinnata huvirühmade kaasnevate riskide tõenäosust ja riskitaset.

**Tabel 1-2. Keskmine riskihinne stsenaariumide kaupa kõigi riskide korral**

<table>
<thead>
<tr>
<th>Tõenäosus</th>
<th>Riskitase</th>
<th>Kokku</th>
<th>Kokkuvõte</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Taastuvgaas</strong></td>
<td>2,61</td>
<td>2,67</td>
<td>2,64</td>
</tr>
<tr>
<td>Köik tehnoloogiad</td>
<td>2,88</td>
<td>2,82</td>
<td>2,85</td>
</tr>
<tr>
<td>Võrdlus</td>
<td>2,88</td>
<td>2,98</td>
<td>2,93</td>
</tr>
<tr>
<td>1000 MW juhitav võimsus</td>
<td>2,93</td>
<td>3,00</td>
<td>2,96</td>
</tr>
</tbody>
</table>
| Süsiniku püüdmine ja kasutamine (CCU) | 2,94 | 3,16 | 3,05 | Keskmise riskitasemega stsenaarium, ei meeldi huvirühmadele. Peamine risk on tehnoloogiline.
| Taastuvenergia ja salvestus (avamere tuuleenergia) | 2,92 | 3,23 | 3,07 | Huvirühmad peavad seda riskantseks, kuid toetavad kõige rohe m. Energiauturuga seotud kõrge riskitase. |
| Netoimpordita stsenaarium | 3,24 | 3,27 | 3,26 | Riskitasemelt teine, huvirühmadele üldiselt ei meeldi. Suured regulatiivsed riskid |
| **Tuumaenergia** | 3,52 | 3,83 | 3,67 | Kõige riskantsem stsenaarium, huvirühmade hoiak möödulik negatiivne. Peamised riskid on seotud kodanike vastuseisuk, reguleerimise, tehnoloogilise viivituse ja kulude ületamisega. |
| **Kogusumma** | 3,02 | 3,17 | 3,09 | |

Vastajail paluti järjestada stsenaariumid skalaal 1–5, kus 1 tähistab eelistust, 5 viimat. Kõige rohkem eelistati taastuvenergiat ja salvestust, sellele järgnes kõigi tehnoloogiate stsenaarium. Toetuselt järgmine oli taastuvgaasi stsenaarium, mida toetati mõõdukalt. Kõige vähem eelistati süsiniku püüdmise ja kasutamise stsenaariumi ning see oli ainus, millele üks vastaja väljendas selget vastuseisus.
Joonis 1-4. Stsenaariumid eelistuste järgi

Küsitlusele järgnes seitse intervjuud, milles osalesid peamised huvirühmad (arendajad, kutseliidud, eksperdid). Intervjuude käigus paluti huvirühmadel oma vastuseid täiendavalt selgitada ja anda lisateavet eri riskide kohta.

Huvirühmadelt küsiti ka arvamust praeguste probleemide kohta, mis takistavad analüüsitud stsenaariumide ellu rakendamist ning soovitusi, kuidas need takistused ületada ja riske maandada.

1.4 Kuues aruanne: tundlikkusanalüüs

Kuuendas aruanandes hinnati stsenaariumide mudelleerimise aluseks olevate oluliste eelduste usaldusväärsust. Selleks testiti nelja tundlikkust:

(S1) Tundlikkus nr 1 testis alternatiivsete tuule käverate kasutamise mõju kõigi stsenaariumide puhul: testimisel kasutati detailsemat andmestikku Eesti tuuleolude varieeruvuse kohta, mis kajastab täpsemalt elektritootmiseks sobiva tuule varieeruvust aasta lõikes. Kuna sellel oli oluline mõju kõikidele stsenaariumidele, siis arvutati kõik esialgsed mudelleerimistulemused uuesti. Selle tundlikkusanalüüsi käigus koostatud uued stsenaariumid asendavad kolmanda aruande raames esialgset mudelleeritud stsenaariume ja neid kasutatakse ka järgmiste tundlikkusanalüüside alusena.

(S2) Tundlikkus nr 2 testis kõrgema koormusteguriga tuumae energia tootmist (ainult) tuumaenergia stsenaariumis: Tuumae energia tootmisele 90%-like koormusteguri rakendamine tuumaenergia stsenaariumis eeldatud 65-70% asemen.

(S3) Tundlikkus nr 3 testis kõrgemate biomassihindade mõju taastuvenergia ja salvestuse stsenaariumile: Eeldatud, et 2050. aastaks võib biomassi hind (mis võib kajastada voidal efekts, mis võib piiratumaks raemiahtude või biomassi kõiklikkus uues määratluses). Saadud mudeli tulemusi võrreldi taastuenergia ja salvestuse esialgse stsenaariumiga.

(S4) Tundlikkus nr 4 testis kõrgemate akutehnoloogiate kõrgemate hindade ja pumphüdroakumulatsiooni rajamise mõju (koostoimes tundlikkustega nr 1, nr 2 ja nr 3) taastuenergia ja salvestuse stsenaariumile: Taastuenergia ja salvestuse stsenaarium on üks kõige atraktiivsemaid stsenaariume Eesti elektritootmise süsinikuheite vähendamiseks, kuid selle realiseerimisel on määrav roll salvestamise. Seetõttu analüüsiti, mida tähendaks akude kapitalikulu suurenemine ja pumphüdroakumulatsiooni jaam loomine sellele stsenaariumile.
(S1) täielikud tulemused 2050. aasta kohta on esitatud tabelis 1-3.

Analüüs (S1) Akud ja tarbimise juhtimise laahendused on kulupõhiselt konkurentsivõimalised kõigis stenaariumides. Akude ulatuslikkas kasutuselevõtt (4,6–9,3 GW mahus) prognoositakse kõigis stenaariumides, sest akud on paindlikud ja tulevikus vähenevate kuludega. Tuule- ja päikeseenergia samaeagle arendamine on kasulik süsteemi töökindluse seisukohalt, sest tuule- ja päikeseenergia täiendavad teineteist. Üldjuhul on maismaa tuuleenergia kõigis stenaariumides kulupõhiselt konkurentsivõimaliseks kui avamere tuuleenergia, kuid mõningal määral võetakse avamere tuuleenergia kasutusele paeeagu kõigis kliimaneutraalsetes stenaariumides (mõnel juhul 2030. või 2040. aastaks, mõnel juhul alles 2050. aastaks). Eesti avamere tuuleenergia kasutamiseks on vaja investeerida ülekandeliinide rajamisse ja tugevdamisse (tõenäoliselt vahemikus 600-1300 MW Lääne-Eesti ja muude piirkondade vahel).


Ajahemikus 2030-2050 suureneb juhitavate võimsuste maht veidi kõigis stenaariumides, kuid see tuleneb suures osas akude võimsuse lisandumisest ning jatkuvast biomassil töötavate põlevkivielektrijaamade kasutamisest. Kõige rohkem alternatiivsete juhitavate võimsusi kasutab eriti ja enamik juhitava võimsusest on tagasiühendik või puudub üldse, sest nende ressursside kasutamine on piiratud.


Ajahemikus 2030–2050 suureneb juhitavate võimsuste maht veidi kõigis stenaariumides, kuid see tuleneb suures osas akude võimsuse lisandumisest ning jatkuvast biomassil töötavate põlevkivielektrijaamade kasutamisest. Kõige rohkem alternatiivsete juhitavate võimsusi kasutab esialgu ja enamik juhitava võimsusest on tagasiühendik või puudub üldse, sest nende ressursside kasutamine on piiratud.


Prognoositavad elektrihinnad16 Eestis on kõikide kliimaneutraalsete stenaariumide korral kõrgemad kui praegu. Stenaariumides jäävad prognoositavad hinnad vaheemikku ligikaudu 90–110€/MWh, kuid

---

16 Hinnatud kaudelt elektrineenergia kaalutud keskkomis tasandatud kulude (ingl levelized cost of electricity) alusel, sest uuringu ajal ei olnud võimalik hindu modelleerida.
on kõrgemad taastuvenergia ja salvestuse stsenaariumis (ligikaudu 140 €/MWh) ja eelkõige süsiniku püüdmise ja kasutamise stsenaariumis (üle 145 €/MWh). Taastuvenergia ja salvestuse stsenaariumis on alternatiivsetel tuulekõveratel märkimisväärne mõju hindadele. Kui aga tuulikute kasutegurid paranevad, nagu eeldavad valdkonna esindajad eriti meretuuleparkide puhul (eeldatust parem tuul suurematel kõrgustel ja tuuliku kõrgem kasutustegur), on tõenäoline, et selle elektritootmisviisil hinnad kujunevad madalamaks.

Kasvuhoonegaaside heitkogused vähenevad kiiresti kõigi stsenaariumide puhul, mis on 2050. aastaks kliimaneutraalsed. Osades stsenaariumides, kus heitkogused ei ole juba nulltasemel, on kliimaneutraalsuse saavutamise jaoks vajalik CO₂ püüdmine otse atmosfäärist. Seega nende stsenaariumide elluviimine toetab paketi „Eesmärk 55“ ja süsinikuneutraalsuse eesmärke. Stsenaariumide vahel on heite mõttes siiski mõningaid erinevusi. Süsiniku püüdmises ja kasutamise stsenaariumis saavutatakse soovitud netoheide bioenergia tootmisel süsiniku püüdmise ja säilitamisega (BECCS)17, samas kui kõikide tehnoloogiate, eelkõige netoimporditava stsenaariumis on heitkogused suuremad, sest maagaasi kasutamine jätetuna 2050. aastani.


---

17 Hoiatav märkus: kasvuhoonegaaside arvestuse kohaselt oleksid Eesti energeetikasektori heitkogused süsiniku püüdmise ja kasutamise korral normipäraised, aga et peaaegu 70% elektrist imporditakse, tuleneksid võimalikud märkimisväärsetel heitkogusel kaudselt Eesti vajadustest.
### Tabel 1-3. Kuuenda aruande tundlikkusanalüüsi (S1) peamised tulemused alternatiivsete tuulekõverate põhjal

<table>
<thead>
<tr>
<th>Voimsus MW</th>
<th>Tootmine TWh</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Pumped hydro</em></td>
<td><em>Pumped hydro</em></td>
</tr>
<tr>
<td><em>Nuclear</em></td>
<td><em>Nuclear</em></td>
</tr>
<tr>
<td><em>DSM</em></td>
<td><em>DSM</em></td>
</tr>
<tr>
<td><em>Waste</em></td>
<td><em>Waste</em></td>
</tr>
<tr>
<td><em>Solar PV</em></td>
<td><em>Solar PV</em></td>
</tr>
<tr>
<td><em>Other Renewables</em></td>
<td><em>Other Renewables</em></td>
</tr>
<tr>
<td><em>Onshore Wind</em></td>
<td><em>Onshore Wind</em></td>
</tr>
<tr>
<td><em>Offshore Wind</em></td>
<td><em>Offshore Wind</em></td>
</tr>
<tr>
<td><em>Hydro</em></td>
<td><em>Hydro</em></td>
</tr>
<tr>
<td><em>Fossil Gas</em></td>
<td><em>Fossil Gas</em></td>
</tr>
<tr>
<td><em>Bioenergy</em></td>
<td><em>Bioenergy</em></td>
</tr>
<tr>
<td><em>Batteries</em></td>
<td><em>Batteries</em></td>
</tr>
<tr>
<td><em>% dispatched</em></td>
<td><em>% dispatched</em></td>
</tr>
</tbody>
</table>

#### Hinnad €/MWh

<table>
<thead>
<tr>
<th>Kasvuhoonegaaside heitkogused</th>
<th>Heitkogused</th>
<th>Kumulatiivne kogus ktCO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BAU</strong></td>
<td>2667</td>
<td>763</td>
</tr>
<tr>
<td><strong>Taastuvenergia ja salvestus</strong></td>
<td>2667</td>
<td>782</td>
</tr>
<tr>
<td><strong>Tuumaenergia</strong></td>
<td>2667</td>
<td>754</td>
</tr>
<tr>
<td><strong>Süsiniku puüdmise ja kasutamise (CCU)</strong></td>
<td>2667</td>
<td>493</td>
</tr>
<tr>
<td><strong>Taastuvgaas</strong></td>
<td>2667</td>
<td>728</td>
</tr>
<tr>
<td><strong>Kõik tehnoogiad</strong></td>
<td>2667</td>
<td>722</td>
</tr>
<tr>
<td><strong>Kõik tehnoogiad ilma netoimpordita</strong></td>
<td>2667</td>
<td>766</td>
</tr>
</tbody>
</table>

* Kõigis stsenaariumides peale süsiniku puüdmise ja kasutamise viiaakse põlevkivitõhusaid 2030. aastatele üle biomassa.
Ülejäänud kolme tundlikkusanalüüsi tulemused on kokku võetud allpool.

- Tundlikkuse nr 2 testimisel (S2) suureneks 65-70%-lise koormusteguriga asemel 90%-lise koormusvõimsusega rakendamisel tuumavöömsusele selles stenaariumis uute rajatud tootmisvoimuses mehhoit (tänu suuremale rajatud akudamisele) ja laieneks mõningal määral juhitavate võimsuste osatähtsuse kogu portfells. Selle tulemusel suureneks elektritootmise mahud, kasvaks märkavatalt keskmise elektriühend ja suureneks kasvuhoonegaaside heitkogused. Kõrgema koormusteguriga kaasneb tuumaenergia tootmisvöömsuse kasvust tingitud hinnatõus, mis omakorda vähendaks stenaariumi sotsiaalmajandusliku positiivset mõju (mis muidu suuremahulisite investeeringutega oleks tekinud).
- Tundlikkuse nr 3 testimine (S3) näitas, et kõrgem biomassi hind suunaks investeeringu rohkem akudeesse ja päikeseelektri võimsusele, selle tulemuseks suureneks kokku elektritoodang, kasvaks keskmed elektri hinnad 2040. ja 2050. aastatel ning suureneks kasvuhoonegaaside heitkogused.
- Tundlikkuse nr 4 testimine (S4) näitas, et akutehnoloogiate kõrgemad hinnad ja Paldiski pumphüdroakumulatsioonina näitas, et kõrgemad hinnad ja Paldiski pumphüdroakumulatsiooni mahutamine mõjutaks taastuvenergia ja salvestuse stenaariumi järgmiselt: vähenevad akude ja põhjusenergia tootmisvoimused ning kogutoodang, hinnad ja investeerimiskulud võrreldes (S1)-ga on väiksemad. Pumphüdroakumulatsiooni mahutamine asendab kasuline akudentena põhjusenergia kasvukahvaned, muidu kasvaks kulude suurenemine vähendab akude ja põhjusenergia kombinatsiooni majanduslikku tasuvust.

1.5 Seitsmes aruanne: tegevuskavand

Seitsmendas aruandes võeti kokku eelneva analüüsi tulemused ja pakuti nende põhjal välja tegevused, mis aitaks stenaariumi ehitatud ja avalikus sektoris olevat asjadele viia. Pakutud tegevused on koondatud kuueks rühmaks ja on eraldi välja toodud ka nende asjakohasus igas stenaariumis. Sekkmisvaldkonnad ja tegevused on toodud järgnevas tabelis.

**Tabel 1-4 Tegevuste loetelu**

<table>
<thead>
<tr>
<th>Tegevuste pakett</th>
<th>Tegevused</th>
<th>Peamised</th>
<th>Stenaariumid</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Planeerimine</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A. Kiirendada taristu planeerimise kooskõlastamist.</td>
<td>● Kükl stenaariumid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B. Suurendada planeerimiseks ja ühe tähtseta haldusressursse.</td>
<td>● Kükl stenaariumid, v.a. &quot;Süsiniku püüdmine ja kasutamine&quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C. Tugitegevused kooskõlastusprotsesside kiirendamiseks.</td>
<td>● Kükl stenaariumid, v.a. &quot;Süsiniku püüdmine ja kasutamine&quot;</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Institutsionaalne reform</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A. Luua tuumaenergeetikat reguleerivat asutuset.</td>
<td>● &quot;Tuumaenergia&quot;</td>
<td>&quot;Kõik tehnoloogiad&quot;</td>
<td></td>
</tr>
<tr>
<td>2B. Vaadata läbi Eesti riiklikul regulaatorini (Konkurentsiamet) volituse.</td>
<td>● Kükl stenaariumid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C. Luua energia- ja kliimaamet.</td>
<td>● Kükl stenaariumid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D. Suurendada piiritest koostööd.</td>
<td>● Kükl stenaariumid</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Risikid võhendmise vahendid</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A. Tegevused energiaotulepingute kasutuselevõtu soodustamiseks.</td>
<td>● Kükl stenaariumid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3C. Viia kogu taastuvenergia rahastamine või osa sellest üle maagaasi (või muude vähendite arvele).</td>
<td>● &quot;Tuumaenergia&quot; ja salvestuse (avamere tuuleenergia)</td>
<td>&quot;Kõik tehnoloogiad&quot;</td>
<td></td>
</tr>
<tr>
<td>3D. Suurendada Eesti Ettevõttet ja Innovatsiooni Suhtlusasutused (KredExi) pakutavate riigigarantide praegust suhjust ja töötada välja laiem riig.jarantide raamistik.</td>
<td>● Kükl stenaariumid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E. Avaliku sektori kaasinvesteeringu ja riskide jagamine.</td>
<td>● &quot;Tuumaenergia&quot;</td>
<td>&quot;Süsiniku püüdmine ja kasutamine&quot;</td>
<td></td>
</tr>
<tr>
<td><strong>Taastuvenergia kodumajapidamistele ning väike- ja keskmise suurusega ettevõtetele</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Elektrivõrgud</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5B. Suurendada veelgi Baltimaade tasakaalustamisturu läbipärvast.</td>
<td>● Kükl stenaariumid, süsiniku püüdmine ja kasutamine ning tuumaenergia stenaariumide jaoks väiksema tähtsusega</td>
<td>&quot;Kõik tehnoloogiad&quot;</td>
<td></td>
</tr>
<tr>
<td>5C. Parandada akutehnoloogia majanduslikkust elujõulisust ja juurdepääs rahast usele.</td>
<td>● Kükl stenaariumid, süsiniku püüdmine ja kasutamine ning tuumaenergia stenaariumide jaoks väiksema tähtsusega</td>
<td>&quot;Kõik tehnoloogiad&quot;</td>
<td></td>
</tr>
<tr>
<td>5D. Luua tarbimise juhtimise raamistik.</td>
<td>● Kükl stenaariumid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Paljud tegevused on asjakohased kõigi vaadeldavate stseenaariumide puhul. Need on:

- **tegevused planeerimiseprotsesside tõhusamiseks**, eelkõige haldusnõuete lihtsustamiseks, otsuste kiirendamiseks (pakkuda rohkem ressurse ja motivaatiorid kohalikele omavalitsustele kui otsustajatele). Kui sellest ei piisa, et hoogustada vajalike tehnoloogiate piisavas temps turule tulekut, siis tuleks planeerimise alased ja loastamise seotud kohustused üle riiklikule tasandile. Nendel kohustusid saab kohandada vastavalt eellistatud strateegiale (nt keskendudes väikestele või suurtele projektidele, riiklikele või kohalikele haldusasutustele);

- **taastuvenergiasse või vähese suuruse sindikatuhteesse tehtavate investeeringutega seotud riskide maandamine**. Enamiku taastuvenergiaallikate puhul leidub olulisi tururiske, sh risk, et nende ulatuslik kasutuselevõtt tulevikus võib suruda turuhinnad väga madalaks neil tundidel, mil kõik taastuvenergiaallikaid on korraga tootmisvõimalised. Riskide maandamiseks soovitame sõlmid hinnavahelepingud, mille eelarved sõltuvad eesmärgiks seatud võimsuste mahust ja tehnoloogiatest. Muude stseenaariumide puhul, nt „Taastuvgaas“ „Tuumaenergia“ ning „Süsiniku püüdmine ja kasutamine“, on seevastu vaja spetsiifilisemaid riskide maandamise meetmeid, mis peaks aitama konkreetsetel tehnoloogial turule tulla;

- **Baltimaade reservvõimsuse, painede ja süsteemiteenuste turu läbipaistvamaks muutmine, avatus eri tehnoloogiatele, lähiriikidele ja tootjatele**. See oleks oluline vahend akude või muude salvestuslahenduste kasutuselevõtiks, mida on vaja iga stseenaariumi korral;

- **tarbimise juhtimise kasutuselevõttu toetavate** tegevused. Kõikides stseenaariumides kasutatakse ära kogu tarbimise juhtimise potentsiaal (261 MW), kusjuures selle kasutamine 2030. aastal (25-29 GWh) ja 2050. aastal (21-27 GWh) on üldiselt sarnane. Tarbimise juhtimisel peaks saama osaks eelmiseks punktis käsitletud painede jaotusvõrgust turul;

- **tegevused energiastuletingute kasutuselvõtus soodustamiseks**. Nende meetmete eesmärk on lihtsustada lepingupoolte (tootjad ja tarbijad) vahelisi kokkulepeid, luues tüüplepingud ja motivaatorid tarbijatele, kes otsustavad niisugused lepingud sõlmita; ja

- **ettevõtluse ja Inovatsiooni Sihtasutuse (KredExi) pakutavate garantiihinnangute kasutamise nõutavaid riskipreemiaid**;

- **Tegevused haavatavate leibkondade toetamiseks**. Need peaksid hõlmaeri liikletust, sh majanduslikku, tehnilist ja informatiivset. Mõned käsitletud stseenaariumid võivad oluliselt mõjutada elektroonikate, mistõttu tuleks kõige haavatavamatel tarbijatel aidata vähendada tarbimist ja parandada nende juurdepääsu programmidele, mis aidavad ellu viia energiatõhusust tagavaid tegevusi.

---

18 ingl contracts for difference

---

<table>
<thead>
<tr>
<th>Kodanikuhäiskonna kaasamine</th>
<th>Muudtegevused</th>
</tr>
</thead>
<tbody>
<tr>
<td>6A. Korraldada uue taastuvenergia strateegia vastuvõtmisel teavituskampaania.</td>
<td>7A. Toetada haavatavaid leibkondi.</td>
</tr>
<tr>
<td>6B. Seada sisse kontaktpunktid.</td>
<td>7B. Arenenda oskusi.</td>
</tr>
<tr>
<td>6C. Kohalikud tegevusrühmad.</td>
<td>6A.</td>
</tr>
<tr>
<td>6D. Hõlbustada kodanikukühinduste ja taastuvenergia kogukondade kasutuselevõtu.</td>
<td>6C.</td>
</tr>
<tr>
<td>t. üld.</td>
<td>6D.</td>
</tr>
</tbody>
</table>

---

**Kõik tegevused** on asjakohased kõigi vaadeldavate stseenaariumide puhul. Need on:

- tegevused planeerimise protsesside tõhusamiseks, eelkõige haldusnõuete lihtsustamiseks, otsuste kiirendamiseks (pakkuda rohkem ressurse ja motivaatiorid kohalikele omavalitsustele kui otsustajatele). Kui sellest ei piisa, et hoogustada vajalike tehnoloogiate piisavas temps turule tulekut, siis tuleks planeerimise alased ja loastamise seotud kohustused üle riiklikule tasandile. Nendel kohustusid saab kohandada vastavalt eellistatud strateegiale (nt keskendudes väikestele või suurtele projektidele, riiklikele või kohalikele haldusasutustele);


- Baltimaade reservvõimsuse, painede ja süsteemiteenuste turu läbipaistvamaks muutmine, avatus eri tehnoloogiatele, lähiriikidele ja tootjatele. See oleks oluline vahend akude või muude salvestuslahenduste kasutuselevõtus, mida on vaja iga stseenaariumi korral;

- tarbimise juhtimise kasutuselevõttu toetavate tegevused. Kõikides stseenaariumides kasutatakse ära kogu tarbimise juhtimise potentsiaal (261 MW), kusjuures selle kasutamine 2030. aastal (25-29 GWh) ja 2050. aastal (21-27 GWh) on üldiselt sarnane. Tarbimise juhtimisel peaks saama osaks eelmiseks punktis käsitletud painede jaotusvõrgust turul; ja

- tegevused energiastuletingute kasutuselvõtus soodustamiseks. Nende meetmete eesmärk on lihtsustada lepingupoolte (tootjad ja tarbijad) vahelisi kokkulepeid, luues tüüplepingud ja motivaatorid tarbijatele, kes otsustavad niisugused lepingud sõlmita; ja

- ettevõtluse ja Inovatsiooni Sihtasutuse (KredExi) pakutavate garantiihinnangute kasutamise nõutavaid riskipreemiaid;

<table>
<thead>
<tr>
<th>Tegevuste paketti</th>
<th>Eesmärk</th>
<th>Ajakava</th>
<th>Vastutav</th>
<th>Muud peamised huvi rõhmad</th>
<th>Kulud ja ressursid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Planeerimisprotsessi reform</td>
<td>Kiirendada koostööläastamist ja vähendada arendajate riski.</td>
<td>Lühiajaline (2023-2030)</td>
<td>Valitsus</td>
<td>Kohalikud omavalitsused</td>
<td>Odav, peamiselt inimressurs</td>
</tr>
<tr>
<td>4. Kodumajapidamiste ja VKEde toetamine</td>
<td>Võtme tegemise tegevusest</td>
<td>Lühiajaline (2023-2035)</td>
<td>Valitsus</td>
<td>Oleneb valitud rakendusvõist</td>
<td>Kulud varieeruvad suurel määral olenevalt stenaariumist ja sõltuvad tulevastest energiahindadest</td>
</tr>
<tr>
<td>5. Elektrivõrgud</td>
<td>Võimaldada taastuvate energia allikate kasutamist välismaal süsteemikulu vastu.</td>
<td>Keskmine tähtaja (2023-2035)</td>
<td>Põhiõiguset tevöötja</td>
<td>Valitsus</td>
<td>Rahastatakse elektriarvete kaudu</td>
</tr>
<tr>
<td>7. Muud tegevused</td>
<td>Valitsta ebasisoodase mõju leibkondadele, tagada oskuste olemasolu.</td>
<td>--</td>
<td>Valitsus</td>
<td>Oleneb tegevusest</td>
<td>Erineb suurelt stenaariumist ja makromajanduslikest segurustest</td>
</tr>
</tbody>
</table>


### 1.5.1 Võtmetegevused stenaariumi tasandil

Lisaaks peaks stenaariumides arvestama järgnevaga:

- **Taastuenergy ja salvestus (avamere tuuleenergia):** See on kõige ambitsoonikam stenaarium, mis näeb ette avamere tuuleenergia ja salvestustehnoloogiate suuremahulist kasutuselevõttu ning millega kaasneb suurimad investeeringute mahud nii tootmisvõimsusest kui ka ülekaandalistest osast. Investeeringud avaldavad siiski positiivset madajasüdlikku mõju ja avamere tuuleenergia ulatuslikku kasutuselevõtu kaasnevaid keskkonnamaajusi vaimlik piirata. Stenaariumi rakendamiseks on vaja keskenduda avamere tuuleenergia kasutuselevõtulehjustamisele (tehnoloogia-spetsifiline toetus; võrgu arendamine; ülekaandevõimsuse loomine, salvestuslahenduste kasutuselevõtu toetamisele ja haavatavate tarbijate kaitsmisele energiarenduse võimaliku suurenemise eest.

- **Taastuvgas (muudetud):** Kuigi taastuvgaa stenaariumi modelleerimistulemusid annavad suhteliselt tasakaalustatud elektrisüsteemi, selgas samas, et positiivsete mõjude tagamiseks tuleks selles stenaariumis eluslikult eeldatud 1GW asemel rajada biogaasi võimsus väiksemaks mahaks, kuna muudel näitab, et suurte tegevuskulu tõttu (biogaasi tooraine kõrge hind) toodakse biogaasi võimsusest veidi elektrit. See vastuolu viitab, et muutmata kujul ei ole tegemist Eesti jaoks ideaalse arengusuunaga. Eelkõige parendaks stenaariumi kulutõhusus väiksemaks mahaks biogaaskõrva võimsusest kasutuselevõtud. Pöhimenee on biogaasirajatiste tehnoloogiaajõhine toetamine.

- **Kõik tehnoloogiad:** See on põhilisenaarim tehnoloogianutraalsete stenaariumite hulgas. See lähene mis tagab tasakaalustatud tootmisportfelli ja investeeringute mahu vaalendud perioodi jooksul. Kuigi stenaarium 19 ehk kus ei eeldatud ühe spetsifilise tehnoloogi nagu tuumaenergia, biogaas jm ette määratud mahus kasutuselevõttu.

19 ehk kus ei eeldatud ühe spetsifilise tehnoloogi nagu tuumaenergia, biogaas jm ette määratud mahus kasutuselevõttu
ei tõuse esile eriti positiivsete tulemustega ühegi võrdluskriteeriumi lõikes, ei ole sel ka ühtegi olulist nörka külg. Põhimeede on tehnoloogianeutraalne investeeringute toetamine.

- **Netoimportida stsenaarium ja 1000 MW juhitav võimsus**: Nende kahe stsenaariumi, mis põhinevad kõikide tehnoloogiate konkurentsil, tulemused on tootmisportfelli (tuule-, päikeseenergia, akusalvestuse jms osas), kulude ja juhivatate võimsuste mõttes suures osas sarnased. Erinevate eelduste tõttu on stsenaariumite vahel erinevusi mõningate tehnoloogiate osas. „Kõik tehnoloogiad ilma netoimportida“, on üks väähestest stsenaariumidest, milles ei kasutata biomassel üle viidud põlevkivivõimsusi. See on sääslikum Eesti metsades ressursi kasutamise mõttes, kuid selle hinnaks on, et maagaasi kasutatakse rohkem. Antud stsenaarium on majandusmõjute mõttes üks kasulikumaid. Soovitata vajalikku osalisest kasutamisest ja hoiaid on ukse lahti kõigile lahendustele, kuniks selgub, millised neist on kõige külkefektiivsemad. Põhimeede on netoimportida stsenaariumi korral alustada ettevalmistusi tuuamaenergia kasutuselevõtaks tulevikus, 1000 MW juhitava võimsuse stsenaariumi korral on põhielementide mõttes suunatud investeeringute soodustamise instrument.

- **Tuuamaenergia**: Seda stsenaariumit iseloomustab keskendumine tuuma- ja päikeseenergialle. See on investeeringute mahu mõttes suures osas teine stsenaarium, samas võib selle tulemusel 2050. aastal oodata käiku põhjal, mis kasutatakse elektrihindu (seda juhul, kui tuumajaamad töötavad 65-70% koormustest). Peamised meetmed on seotud riikliku tuumaenergia valdkonna arendamisega ja muude taastuvaid energiaallikaid kasutamise muutmiseks. Huvirühmade sõnul on see stsenaarium kõige riskantsem tõlkuotsusega, millel puudub Eestis ajalugu ja mida eeldatavasti ei saa kasutusele võtta enne 2035. aastat.


1.5.2 Soovitatavad meetmed ebasoodsa mõju vähendamiseks ja soodsad mõju suurendamiseks

Järgmine tabel annab ülevaate soovitatud meetmetest erinevate stsenaariumide keskondlike, sotsiaalsete ja majanduslike negatiivsete mõjude leevendamiseks või positiivsete suurendamiseks. Tabelis on ka toodud asjakohas iga stsenaariumi korral. (nt 1000MW juhitavate võimsuste stsenaariumis eelisid mudel lisada tootmisportfelli ka ca 400 kW pumphüdro võimsusi, samas kui „Kõik tehnoloogiad ilma netoimportida“, puhul eelisid mudel lisada taastuvaenergia ja sildanimisvõimsuste kõrvalto tootmisportfelli 300MW tuuamaenergia võimsusi)

<p>| Tabel 1-6. Soovitatavad meetmed ebasoodsa mõju vähendamiseks ja soodsad mõju suurendamiseks |
|---|---|---|---|
| Mõju | Mõju liik | Soovitused | Stsenaarium, mida mõju puudutab |
| Sotsiaalne mõju | - Ehitada avamere tuulepargid tööstuspiirkondade läheduses, kus muutetakse juba muudetud, et võimalikult rikkude vaatet kooskõlapoolsetest toodetest. |  |
| Majandusmõju | - Tagada asjaomaste huvirühmade, et kohaliku majanduse kõrget kvalifitseeritud spetsialistide ettevalmistuse. |  |
| Maismaa tuuleenergia | Keskkonnamõju | - Tagada tuudeparkide hoolikas projekteerimine, järelevalve ja haldamine, et mitte hoida metsaelemendid ja nende elupaikade. | Kõik stsenaariumid |
| Sotsiaalne mõju | - Tagada, et sisemaa tuuleparkide osakaal tervise säilitamiseks. |  |
| Majandusmõju | - Tagada tuuleenergia kasutamine. |  |</p>
<table>
<thead>
<tr>
<th>Müür</th>
<th>Mõju liik</th>
<th>Soovitused</th>
<th>Stsenaarium, mida mõju puudutab</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Päikeseenergia</strong></td>
<td><strong>Keskkonnamõju</strong></td>
<td>● Tagada päikeseelektriJaamade hoolikas projekteerimine, järelevalve ja haldamine, et mitte häireida metsloomi ja nende elupaiku.</td>
<td>● Kõik stsenaariumid</td>
</tr>
<tr>
<td></td>
<td><strong>Majandusmõju</strong></td>
<td>● Tagada päikeseenergiatööstuse kõrge kvalifitseeritud spetsialistide ettevalmist us.</td>
<td></td>
</tr>
<tr>
<td><strong>Tuumaenergia</strong></td>
<td><strong>Keskkonnamõju</strong></td>
<td>● Range kontroll vee kasutamise ja arajuhtimise üle (soojuseostuse tööt); ● Ranged piirangud, et mürgised ja radioaktiivsed jäätmned ei satuks keskkonda, ning nõuetekohan e jäätmekäitlus .</td>
<td>● Tuumaenergia</td>
</tr>
<tr>
<td></td>
<td><strong>Sotsiaalne mõju</strong></td>
<td>● Ranged raskete öönetuste ennetamise ja leevendamise meetmed.</td>
<td>● Netoimportrita stsenaarium</td>
</tr>
<tr>
<td><strong>Biomass ja biogaas</strong></td>
<td><strong>Keskkonnamõju</strong></td>
<td>● Metsamaterjali energiatootmiseks kasutamise asjakohane reguleerimine ja juhtimine.</td>
<td>● Taastuvenergia ja salvestus</td>
</tr>
<tr>
<td></td>
<td><strong>Majandusmõju</strong></td>
<td>● Tagada, et riigis oleks piisavalt kõrge kvalifitseeritud tuumaenergiatööstuse spetsialiste.</td>
<td>● Taastuv energia</td>
</tr>
<tr>
<td><strong>Akusalvestus</strong></td>
<td><strong>Keskkonnamõju</strong></td>
<td>● Nõuded akude nõuetekohaseks kõrvaldamiseks / ringluse võtmiseks nende kasutusaja lõppedes.</td>
<td>● Kõik stsenaariumid</td>
</tr>
<tr>
<td></td>
<td><strong>Majandusmõju</strong></td>
<td>● Kaasaastad elektrivõrkute materjali tehnilise kvaliteedi võimendamiseks (kihtide kasutamine); ● Tagada energiasalvestuse valdkonnas kõrge kvalifitseeritud spetsialistide ettevalmist us.</td>
<td></td>
</tr>
<tr>
<td><strong>Ülekanne ja jaotamine</strong></td>
<td><strong>Keskkonnamõju</strong></td>
<td>● Planeerida uute maa- või veealuste ülekande- ja jaotustrasside rajamist, kui see on tehniliselt võimalik; ● Väljendada tarbetut metsaraieid, et tõhustada akusalvestuse arendamist (ELi soovitus); ● Ranged seadmete hoolduse ja kõrvaldamise nõuded (nt SF6).</td>
<td>● Kõik stsenaariumid</td>
</tr>
<tr>
<td></td>
<td><strong>Sotsiaalne mõju</strong></td>
<td>● Kehtestada piirangud kõrge riski esinemise juhtuminisest elanute läheju, et vähendada nende mõju tervisele (keskkonnaalaste õigusaktide kohaldamine); ● Visuaalse mõju vähendamiseks väljendada õhuliidu ja võimalused, et vähendada kõrget mõju (kohalik Tallinnas).</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Majandusmõju</strong></td>
<td>● Tagada ülekanne ja jaotusvõrkude valdkonnas kõrge kvalifitseeritud spetsialistide ettevalmist us.</td>
<td></td>
</tr>
</tbody>
</table>
Lõpparuanne: Peamised tulemused ja järeldused

Lõpparuanne eesmärk on teha projekti senisest käigust kokkuvõte ja anda projekti tulemuste, aga ka tulemuste hindamise ja jälgimise põhjal soovitusi edaspidiseks. Lõpparuanne käsitleb kõiki projekti tulemusi ja annab ülevaate projekti ilmnenud raskustest ja nende ületamisest. Selles peatüksis tutvustatakse saadud õpetunde ja soovitusi.

2.1 Kokkuvõtlik hinnang

Tabel 2-1 annab ülevaate, kuidas on hinnatud iga stsenaariumi erinevate kriteeriumide alusel. Tabeli laiendatud versioon, mis sisaldab alusandmeid, on esitatud lisas. Tabelis püütakse näidata projekti eri etappides hinnatud põhinäitajate võrdlustulemusi ja kaht üldhinnangut, millest esimene põhineb konsultandi ja teine alternatiivsel kriteeriumide valikul. Kuigi konsultandi kriteeriumite lõikes ei ole kaalutud hindamist kasutatud, on need seatud konsultandi eksperthinnanguga järgi tähtsuse järjekorda (st ülemiste veergude kriteeriume peetakse olulisemaks kui alumiste veergude omi). Kriteeriumide olulisus ei ole absoluutväärtusena, vaid sõltub sellest, kuidas näitajaid projekti jaoks välja arvutati.

Valitud näitajate lõikes on igal stsenaariumil nii omad eelised kui ka puudused. Mönel juhul on strateegiale antud mitu väga soodsat hinnangut (++), kuid ka möned väga negatiivsed hinnangud (- -). Mönel juhul, nagu huviühmade seisukohad ja hinnang strateegia rakendamise keerulisuse kohta, on näitajatele antud suur kaal.

Eespool esitatud analüüsi põhjal soovitab töö koostaja eelistada stsenaariume „Kõik tehnoloogiad“, „Taastuvgaas“ ja „Taastuvenergia ja salvestus“. Taastuvgaasi stsenaariumi kohta tuleb aga esitada olulise selgituse, et biogaasi installeeritud võimsus (1GW) nii suures mahus kõrgete muutuvkulu tõttu sama hästi kui ei kasutata. Seetõttu tuleks biogaasi stsenaariumi rakendamise korral oluliselt vähendada biogaasi rajatavaid võimsusi ning suurendada teiste, odavamate ja juhitavate tehnoloogiate investeeringuid.


Samuti on oluline meeles pidada, et kõik strateegiad ulatuvad põhieesmärki - viia Eesti elektrisüsteem 2050. aastaks üle süsinikuneutraalsele tootmisele - ja kõigis hinnangutes on vaalud ajavahemikul (30 aastat) oma osa suurel määramatust. Seetõttu tuleks selles aruandes esitatud analüüsi kasutada sisendina politiitlises otsustes, mitte aga võtta lõpliku järeldusena konkreetse tehnoloogia potentsiaali kohta Eestis. Kuigi süsiniku püüdmise ja kasutamise tehnoloogia ning tuuma- ja biogaasijaamaid ei tundu selle uuringu valikukriteeriumite põhjal Eestile sobivat, võivad need olla sobivad valikud teistsuguste eelduste ja väärtushinnangute korral.
### Tabel 2-1 Kriteeriumide kokkuvõtlik hinnang

<table>
<thead>
<tr>
<th>Kriteeriumid*</th>
<th>Aruanne</th>
<th>Taastuvenergia ja salvestus</th>
<th>Kolik tehnoloogiad</th>
<th>Tuuma energia</th>
<th>Taastuv gaas</th>
<th>Netoiempordita stsenaarium</th>
<th>1000 MW juhitav võimsus</th>
<th>Süsiniku püüdmine ja kasutamine (CCU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huvirühmade eelistus21</td>
<td>5</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Sotsiaalmajanduslik mõju</td>
<td>4</td>
<td>++</td>
<td>0</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Varustuskindlus</td>
<td>3</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>--</td>
</tr>
<tr>
<td>Peamised rakendusprobleemid</td>
<td>7</td>
<td>0</td>
<td>++</td>
<td>--</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Riskialalusi22</td>
<td>5</td>
<td>0</td>
<td>++</td>
<td>--</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Fossiilsete energiaallikate kasutamise piiramise (maagaasi tootmine 2050. aastal)</td>
<td>3</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>++</td>
<td>--</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>Tundlikkusanalüüs</td>
<td>6</td>
<td>++</td>
<td>0</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Keskmise elektrihind 2050. aastal</td>
<td>4</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>Kumulatiivsed investeerimiskulud kokku (2022-2050)</td>
<td>4</td>
<td>--</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>0</td>
<td>0</td>
<td>++</td>
</tr>
<tr>
<td>Taastuvenergia toetuste kulud 2030. aastal</td>
<td>7</td>
<td>--</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>0</td>
<td>++</td>
</tr>
<tr>
<td>CO₂ heitkogused 2050. aastaks</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Biomassist toodetud elektreenenergia 2050. aastal</td>
<td>3</td>
<td>--</td>
<td>--</td>
<td>0</td>
<td>--</td>
<td>++</td>
<td>--</td>
<td>++</td>
</tr>
</tbody>
</table>

**Konsultandi üldine hinnang**

<table>
<thead>
<tr>
<th></th>
<th>Soovitatav</th>
<th>Soovitatav</th>
<th>El soovita</th>
<th>Soovita tav</th>
<th>Elluvilidav</th>
<th>Elluvilidav</th>
<th>El soovita</th>
</tr>
</thead>
</table>

**Alternatiivne järjestus viie kriteeriumi alusel23**

<table>
<thead>
<tr>
<th>Investeerimiskulu</th>
<th>7</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrihind 2050. aastal</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>SKP**</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Loodud töökohad (2030-2050)</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Kodumaise tootmise osakaal 2050. aastal</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

**Üldine pingepinda viie kriteeriumi alusel**

| | 2 | 2 | 1 | 4 | 6 | 5 | 7 |

**Väga soodne (++), mõõduvalt soodne (+), neutraalne / mõju pole (0), mõõduvalt ebasoodne (-), väga ebasoodne (--);**

*Ülemiste veergude kriteeriume peetakse olulisemateks kui alumiste veergude omi.

**Toodangu muutus võrreldes võrreldusnäitajaga. SKP sisaldab maksutulu.**

### 2.2 Peamised järeldused

**Eesti võib saavutada süsinikuneutraalsuse ja vähendada oma energiasõltuvust võttes 2050. aastani kasutusele erinevaid tehnoloogiakombinatsioone.** Kõigi vaatluskriteerite puhul on oluliselt kasutada tootmisvõimsus ja kodumaise tootmise osakaal sisetarbimises. Kõigi stsenariiumide puhul on kasvuhoonegaaside heitkogused väiksemad kui on ehitajatele paketis „Esmärk 55“. **Põhiliste järelduste põhjalik kokkuvõte on esitatud lisa tabelis A-2.**

---

21 Huvirühmade eelistused põhinevad käsitsi tulemustel ja riskianalüüsi käigus toimunud intervjuudel
22 Õigustikud, tehnoloogilised, sotsiaalsed, keskkondlikud, energiaturu- ja majandusriskid.
23 Nende järjestuskriteeriumide väärtused on esitatud tabelis A-2.
Kui arvestada tervikmõju majandusele, siis taastuveneeringa ja salvestamise ning taastuvaasi stseenaariumidel on kõrgest elektrihinnast hoolimata tootmisportfelli arengu, varustuskindluse ja sotsiaalmajandusliku mõju poolset parimad näitajad. Modeleerimine samas näitab, et investeeringud taastuvaasi tootmisvõimsusesse nii suures mahus (1GW) ei oleks mõistlikud, kuna sellega kaasnevad kõrged elektritootmise muutuvkulud oleks teiste tehnoloogiate ja energiaimpordiga vörreldes liiga suured, et taastuvaasi võimsusi päriselt ulatuslikult kasutada. Suured kulud on tingitud biogaasi tooraine hinnast, mis eeldatavasti jääb samale tasemele isegi siis, kui tarneahel on paremini välja arendatud ja mastaabisääst saavutatud.

2.2.1 Tehnoloogia arendamine

Mõned tehnoloogiad saavutavad oma täieliku kasutuspotentsiaali iga stseenaariumi korral. Modeleerimisel on arvestatud sellega, et 2030. aastaks kasutatakse täielikult ära maismaa tuuleparkide ja tarbimise juhtimise võimused (vastavalt 1479 MW ja 261 MW). Lisaks on kõigis stseenaariumides oodata päikeseenergia väga suurt kasutuselevõttu (725-2390 MW aastaks 2030 ja 725-6573 MW aastaks 2050). Ka mõne teise tehnoloogia kasutuselevõtt on eri stseenaariumide lõikes isusarnane, aga need jäävad praeguste võimsuste tasemele ega kasva tulevikus: hüdroenergia (8 MW), jäätmed (18,5 MW), muu taastuveneering (20,32 MW, välja arvatud lisanduv biogaas), biomas (101MW), milles ei sisaldu tulevane kütusevahetus põlevkivijaamades.

Kõigi stseenaariumide puhul kujuneb väljakutseks vajaliku salvestusvõimsuse e, eelkõige akude, kasutuselevõtt piisavas mahus.

Modelleerimine näitab, et Eesti vajab 2030. aastaks 860–2235 MW võimsusega akusid (peaaegu 50% keskmisest taastuveneeringa tootmisvõimsustest) ja 2050. aastaks 4570–9300 MW võimsusega akusid (üle 100% keskmiselt prognoositud taastuveneeringa tootmisvõimsustest). Selleks on enne 2050. aastat vaja salvestusvõimsustesse investeerida 526 miljonit kuni 1,034 miljardit eurot. Et julgustada investoreid niisuguses mahus investeeringuid tegema, on vaja parandada tasakaalustamisturu läbipaistvust.

Tabel 2-2 annab ülevaate hinnangulisest elektrivõimsusest ja -tootmisest stseenaariumide kaupa

<table>
<thead>
<tr>
<th>Stseenaarium</th>
<th>Võimsus ja tootmine</th>
<th>Maismaa tuuleenergia</th>
<th>Avamere tuuleenergia</th>
<th>Päikeseenergia</th>
<th>Akud²4</th>
<th>Muud tehnoloogiad</th>
<th>Kokku</th>
<th>% juhitav</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taastuveneeringa ja salvestus</td>
<td>MW</td>
<td>1479</td>
<td>4000</td>
<td>1929</td>
<td>951</td>
<td>2135</td>
<td>17 425</td>
<td>55</td>
</tr>
<tr>
<td>GWh</td>
<td>3994</td>
<td>12 550</td>
<td>2504</td>
<td>1837</td>
<td>59</td>
<td>382</td>
<td>22 764</td>
<td></td>
</tr>
<tr>
<td>Taastuvaas</td>
<td>MW</td>
<td>1479</td>
<td>1883</td>
<td>3837</td>
<td>5907</td>
<td>1901</td>
<td>15 007</td>
<td>52</td>
</tr>
<tr>
<td>GWh</td>
<td>3750</td>
<td>6079</td>
<td>4555</td>
<td>-88</td>
<td>3316</td>
<td>17 612</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kõik tehnoloogiad</td>
<td>MW</td>
<td>1479</td>
<td>1968</td>
<td>4057</td>
<td>7970</td>
<td>1045</td>
<td>16 519</td>
<td>55</td>
</tr>
<tr>
<td>GWh</td>
<td>3812</td>
<td>6881</td>
<td>4811</td>
<td>-102</td>
<td>3676</td>
<td>19 078</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netoimpordita stseenaarium</td>
<td>MW</td>
<td>1479</td>
<td>1967</td>
<td>3933</td>
<td>7705</td>
<td>1125</td>
<td>16 209</td>
<td>54</td>
</tr>
<tr>
<td>GWh</td>
<td>3821</td>
<td>7088</td>
<td>4615</td>
<td>-97</td>
<td>3648</td>
<td>18 995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 MW Juhitav võimsus</td>
<td>MW</td>
<td>1479</td>
<td>2098</td>
<td>3920</td>
<td>7533</td>
<td>1424</td>
<td>16 453</td>
<td>52</td>
</tr>
<tr>
<td>GWh</td>
<td>3885</td>
<td>7417</td>
<td>4681</td>
<td>-97</td>
<td>3636</td>
<td>19 723</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuumaenergia</td>
<td>MW</td>
<td>1479</td>
<td>1576</td>
<td>6573</td>
<td>9288</td>
<td>1975</td>
<td>20 892</td>
<td>53</td>
</tr>
<tr>
<td>GWh</td>
<td>3795</td>
<td>5594</td>
<td>7549</td>
<td>-114</td>
<td>6656</td>
<td>23 480</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Süsiniku püüdmine ja kasutamine (CCU)</td>
<td>MW</td>
<td>1479</td>
<td>123</td>
<td>725</td>
<td>4571</td>
<td>923</td>
<td>7821</td>
<td>70</td>
</tr>
<tr>
<td>GWh</td>
<td>2640</td>
<td>321</td>
<td>647</td>
<td>-13</td>
<td>989</td>
<td>4585</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

²4 Akude puhul on tootmine (GWh) akukasutus, samas kui võimsus (MW) on akude salvestusmaht.
Elektrienergia tootmiseks vajamineva biomassi kogus on eri stsenaariumide puhul väga erinev. Tänaste põlevkivijaamade üleviimine biomassile võib elektrisektoris põhjustada biomassi tarbimise märkimisväärse suurenemise vörreldes praegusega, st enamiku stsenaariumite puhul eeldatavalt, et 2030. aastal toodetakse sellest biomassist rohkem kui 2 TWh elektrienergiat ja 2050. aastaks suureneb see 3 TWh-ni. Sellises mahus biomassist elektritootmine nõuaks praeguse seadmete efiitiivsusõlustuises umbes 3 miljonit m^3 biomassi (vöi 30% riigi 2021. aasta raiemahtudest), kuid muundamise tõhusus eeldatavasti suurenib, nii et väheneb ka vajamineva biomassi hulk.

Eranditeks on süsiniku püüdmise ja kasutamise stsenaarium (kus jätetakse põlevki kasutamist), netoimpordita stsenaarium (kus biomassil põhinevaid võimsusi asendub maagaasi ja seejärel tuumaenergiaga) ja tuumaenergia stsenaarium (kus biomass asendub tuumaenergiaga).

2.2.2 Poliitika tegevused

Kuivõrd iga stsenaarium näeb ette keeruka tehnooloogiate rakendamise kombinatsiooni, on vaja astuda mitmeid samme stsenaariumide elluviimise toetamiseks. Enamik neist tegevustest on vajalikud ja asjakohased kõigi stsenaariumide puhul, samas tuleb osa tegevusi kohandada eelistatud võimsuste segakeelsete eeskujutele.

Neli tegevust, mis on läbivalt igas stsenaariumis tähtsad:

5. Planeerimisprotsessi lihtsastamine;
6. Taastuvate energiaallikate investeeringute toetamine;
7. Elektrisesteerimise kasutamisest taiendamine, et soodustada investeeringuid paindlikkusteedest vajalikuses tehnooloogiatesse;
8. Ülekanudevõrgu tuendamine (kui siin analüüsides hinnatud jaotusvõrgu tuendamine, on see tõenäoliselt samuti vajalik).

Liisa toodud joonistel A-1 ja A-2 on esitatud kavandatud tegevuste üldine ajakava ning tabelis A-1 on ülevaadatud prioriteetsetest meetmetest stsenaariumide kaupa. Lisaks sellele on iga tehnoloogia kahjulike mõjude vähendamiseks ja soodsate mõjude suurendamiseks soovitatud meetmed kokkuvõtlikult esitatud tabelis 1-6.

2.2.3 Vajalikud investeeringud tehnooloogiatesse ja poliitikameetmetesse

Vajalikud investeeringud on kõigi stsenaariumide puhul märkimisväärsed ja ulatuvad 2050. aasta eel keskmiselt 8,0 miljardi euroni. Investeeringute kogusest varieerub vaadeldud stsenaariumide puhul 3,2 miljardist eurost süsiniku püüdmise ja kasutamise stsenaariumi korral kuni 11,4 miljardi euroni taastuvenergia ja salvestuse stsenaariumi puhul. Ülekandevõimsuse suurendamiseks on eeldatavasti 4% investeeringukulusid. Investeeringud määravad tuule- ja päikeseeenergiasse ja tõstavad stsenaariumide võimsust.

Pakutud tegevuste hinnale pole siinse uuringu ulatuse tõttu võimalik anda detailsets usaldusväärseid hinnanguid. Enamik kaalutud tegevustest on reformid, turgude töökindluse parandamine ja olemasolevate


26 See hõlmab kapitalikulusid ja võrgu tuvedamise kulusid ega sisalda intressimakseid.
instrumentide täüstemine. Suurema osa Tegevuste otsestest kuludest moodustab tõenäoliselt personali tööaeg, kuid sellega võivad kaasneda lisakulud, mida ei ole võimalik täpselt prognoosida.

Tabel 2-3 Kulude kokkuvõte iga stsenaariumi kohta, kumulatiivselt kuni 2050. aastani

<table>
<thead>
<tr>
<th>Vastutavad huvirühmad</th>
<th>Taastuvenergia ja salvestus</th>
<th>Kõik tehnoloogiad</th>
<th>Tuumaenergia</th>
<th>Netoimpordita stsenaarium</th>
<th>Taastuvjas</th>
<th>1000 MW juhitav võimsus</th>
<th>Sisirkku pühkimine ja kasutamine (CCU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kulumisvõlgud investeeritud enne 2050. aastat27</td>
<td>Erainvestorid ja riigi kontrolli all olevad investorid</td>
<td>14 293 min eurot</td>
<td>9025 min eurot</td>
<td>12 089 min eurot</td>
<td>10 454 min eurot</td>
<td>11 577 min eurot</td>
<td>9868 min eurot</td>
</tr>
<tr>
<td>Kapitalikulud</td>
<td>11 040 min eurot</td>
<td>6972 min eurot</td>
<td>9338 min eurot</td>
<td>8075 min eurot</td>
<td>8942 min eurot</td>
<td>7623 min eurot</td>
<td>3065 min eurot</td>
</tr>
<tr>
<td>Intressimaksed</td>
<td>3253 min eurot</td>
<td>2053 min eurot</td>
<td>2751 min eurot</td>
<td>2379 min eurot</td>
<td>2635 min eurot</td>
<td>2245 min eurot</td>
<td>901 min eurot</td>
</tr>
<tr>
<td>Võrgu tugevdamine</td>
<td>355 min eurot</td>
<td>155 min eurot</td>
<td>130 min eurot</td>
<td>135 min eurot</td>
<td>141 min eurot</td>
<td>155 min eurot</td>
<td>135 min eurot</td>
</tr>
<tr>
<td>Planeeringute protsessi läbivaatamise kulud</td>
<td>Valitsus ja kohalik omavalitsus</td>
<td>Madal (halduskulud)</td>
<td>Madal (halduskulud)</td>
<td>Madal (halduskulud)</td>
<td>Madal (halduskulud)</td>
<td>Madal (halduskulud)</td>
<td>Madal (halduskulud)</td>
</tr>
<tr>
<td></td>
<td>Süsteemihaldur</td>
<td>Madal (halduskassus, tarkvara)</td>
</tr>
<tr>
<td></td>
<td>Taastuvenergia toetused aastal 2030 (hinnanguliselt madal-kõrge)</td>
<td>Valitsus</td>
<td>105-209 min eurot</td>
<td>36-71 min eurot</td>
<td>39-78 min eurot</td>
<td>94-189 min eurot</td>
<td>37-73 min eurot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


2.2.4 Nõuanded stsenaariumide kohta

Hinnatud alternatiivistest ei tundu elluviidav süsiniku püüdmise ja kasutamise stsenaarium, sest see ei vasta kodumaise tootmise vajadusele ega taga häid tulemusi muude põhinäitajate, nagu elektrihind, sotsiaalmajanduslik mõju, huvirühmade eelistused ja riskid osas. Kuigi süsiniku püüdmise ja kasutamise stsenaarium on hinnatud variantidest odavaim, ei stimuleeri see piisavalt taastuvenergia tehnoloogiate kasutuselevõttu ja selle keskmise elektrihind on kõige kõrgem. Kuigi modelleeritud kujul seda stsenaariumi ei soovitata, võiks kaaluda süsiniku püüdmise ja kasutamise kombineerimist teiste tehnoloogiatega ja see võiks olla osa tasakaalustatumat tehnoloogiavalikut.


27 Välja arvatud võrgu tugevdamine.
keskmise elektri hinna märkimisväärse tõus, sest vähese nõudluse ajal törjub tuumaenergia muud odavamad tootmisviisid välja.

### 2.3 Soovitused

Projekti viie tulemusaruande ja siinses aruandes esitatud analüüsi tulemuste põhjal anname järgmised soovitused:

**VALITSUSEL PEAB OLEMA SELGE STRATEEGIA, KUIDAS VÄHENDADA SÜSINIKDIOKSIIDI HEIDET JA TÄÍTA STRATEEGIAGA SEOTUD KOHUSTUSI.**

Esitatud stsenariumide põhjal peaks Eesti valitsus vastu võtma selge ja üheselt mõistetava strateegia, kuidas vähendada elektrisektori süsinikuheiteid. Strateegia ei pea võtma täpsel kujul üle üht siin tutvustatud stsenariumidest, kuid see peab sisaldama ühtset eesmärkide, meetmete ja finantskohustuste paketti ning hõlmama nende katteallikaid (üldine maksustamine, energiaarved, erafinanceerimine, institutionaalsed investorid).

Rahandusministeerium ja peaminister peavad võtma võtma selgeid soovitusi, kuidas saavutada külgiga suuremate rakenduste võimalikult laialdase etutuse. Strateegiat tuleb arusaadavalt selgitada kodanikele ja ametnikule kõikidel tasanditel.

**TSENAARIUMI VALIK**


Teine tasakaalustatud tulemust pakkuv võimalus on stsenariuüm „Taastuvagaas“ (positiivne hinnang kõigile vaadeldavate näitajate osas), kuid muidetik kavandatud 1GM biogaasi tootmisvõimsuse mahtu tuleks vähendada, kuna muidetik näitab, et biogaasi võimsused soodsadaks suurte tegevuse/muutuvkulu tõttu tegelikkuses vähe elektril.

Valitsus võib siiski kaaluda mitut meedet, et hoida „elus“ ka tuumaenergia ning süsiniku püüdmise ja kasutamise stsenariiumid ning keskenduda turuolukorra muutudes rohkem nendele tehnoloogiatele. Süsiniku püüdmist ja kasutamist ei ole majanduslikult mõistlik kasutusele võtta ilma mastaabisäästust võimaluseta, samas kui liigis märal seni praktikas tõestamata uutele tuumatehnoloogiatele toetada oleks samuti liiga riskantne. Tuumaenergia stsenariiumiga kaasneb veel üks oht, sest see võib tekitada nn võltsturvatunde varustuskindluse osas ja sellega võidakse öigustada olulistest investeerimisotsustest tulevikku lükkamist ning teiste (täna juba küpssete) tehnoloogiate kasutuselevõtu aeglustumist.

Eelistatud stsenaaariumi leidmine on poliitililine valik, sest kõik esitatud strateegiad saavutavad süsinikdioksiidi heite vähendamise eesmärgid ja muud Eesti elektrisüsteemile seatud peamised eesmärgid. Siiset aruannet ja selles esitatud hinnangut peetakse üksikasjalikuks esitamiseks, mida tuleks määrata kindlaks neile sobivaim tee vähemalt 30 aasta lugemiseks, eest on see mõned kasutamine ja kasutamine kasutusel. Sel hõimul on võimalik liituda neile sobivaim tee.

Näiteks, kui kasutada suuremalt tuuleenergia, ei ole sel ka riikliku maailma- ja salvestusvõimsuse hulka võtta enne 2030 ilma netoimpordita, puhul eelistab mudel lisada taastuvenergia.

Tabel 2-4. Kokkuvõtlik hinnang stsenaaariumide

<table>
<thead>
<tr>
<th>Konsultatiivi hinnang</th>
<th>Alternatiivne pingerida*</th>
<th>Märkused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taastuvenergia ja salvestus</td>
<td>Soovitatav</td>
<td>2</td>
</tr>
<tr>
<td>Kõik tehnilised</td>
<td>Soovitatav</td>
<td>2</td>
</tr>
<tr>
<td>Netoimpordita stsenaaarium</td>
<td>Elluviidad</td>
<td>6</td>
</tr>
</tbody>
</table>
| Süsiniiku püüdmine ja kasutamine (CCU) | Ei soovita | 7 | See stsenaaarium nõuab kõige vähem uusi investeeringuid ja jõtab kodumaade fossiilkütuste kasutamist pikemaks perspektiivil, vähenedes sellegiposti umbes veerandin. Võrreldes tänapäevase põlevkivi kasutamisest. Kuigi selle stsenaaariumi Raumkaandamine on lihtsam ja nõuab vähem täiendavaid meetmeid, on teisalt see stsenaaarium majanduse ja tööhõive eesmärgi, mis võib olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsem valik, kui kasutamine ja kasutamine kasutamine võiks olla Eesti jaoks atraktiivsev

28 ehk kus ei eeldatud ühe spetsiifilise tehnoloogia nagu tuumaenergia, biogas, jmt, ette määratud mahus kasutuselevõttu
29 nt 1000MW juhitavate võimsuste stsenaaariumi eelisest muudel lisada tootmisportfelli ka ca 400 MW pumppiduro võimsus, samas kui „Kõik tehnoloogiad ilma netoimpordita", puhul eelistab muudel lisada tuulaenergia- ja salvestusvõimsustes kõrvale tootmisportfelli 300MW tuumaenergiavõimsus
30 seda juhul, kui tuumajaamad töötavad 65-70% koormuseguruga
RIIGI KASVUHOONEGAASIDE HEITE VÄHENDAMISE EEMÄRKIDE SAAVUTAMISEKS TULEKS SIIN ESITATUD ANALÜÜSI TÄIENDADA LISANÄHUSDASILIIGI, MIS KESKENDUB KA TEISTELE SEKTORITELE (KÜTE, TRANSPORT, PÖLLUMAJANDUS JA METSANDUS, HOONED, TÖÖSTUS) NING MIS VÕTAKS ARVESSE SÜSTEEMI INTEGREERIMISEGA SEOTUD ASPEKTE.


2.4 Öppetunnid tulevaste projektide jaoks teistes EL-i liikmesriikides
Selles peatükis tutvustatakse soovitusi ja öppetunde, et pakkuda Euroopa Komisjonile teadmisi tulevaste projektide tarvis teistes liikmesriikides.

VARAJANE OTSEKONTAKT KÖIGE OLULISEMATE OSALISTELE RIIGI ENERGEETIKASEKTORIS

ROHKEM SISEMISI ARUTELUSID ERINEVATE ENERGEETIKASEKTORI OSALISTELE VÕIMALIK ARENGUSUUNADE ÜLE

MEETMETE KÕIGE OLULISEMATE OTSEKONTAKTID OTSEKIHTMINENI

MEETMETE VARASEMAKS VÄLJATÖÖTAMISEKS TULEKS ANDA ROHKEM AEGA JA ARENDUSMEETOD PEAKS OLEMA SELGEM
Lähteülesandes peaks olema ette nähtud rohkem aega meetmete väljatöötamiseks ja meetmete väljatöötamise kord peaks olema selgem. Meetmete kujundamist tuleks alustada projektide etapis, täpsemalt pärast stsenaariumide väljatöötamist ja enne modelleerimist. Nii saaks modelleerimisel võtta arvesse politlikameetmeid ning kulude ja tulude kohta rohkem. Ühtlasi annaks politlikameetmete kõneluste alustamine protsessi varasemas etapis hurohemele rohkem aega anda tagasisidet, mis võiks vähendada viivusmõju.

TÄPSUSTADA, KAS VAJA ON TEATUD PÕHIELEMENTE
Lähteülesandes tuleks täpsustada, millistele põhielementidele oleks analüüsis vaja keskenduda. Seekordses projektis olid lõpuks põhielementide hulgas ka dekarboniseerimiseks vajalik juhtimisstruktuur ja õigusraamistik, kuid ometi ei olnud neid lähteülesandes esitatud.

PIIRATA MODELLLEERIMISEKS VALITUD STSENAARIUME
Selles projektis valmistas suuri raskusi analüüsitavate stsenaariumide rohkus. Kuigi alguses on oluline arvestada mitme valikuvõimalusega, oleks kasulik võimalikke stsenaariume enne põhjalikuma analüüsisiga jätkamist kitsendada.

**KORRALDADA HUVIRÜHMADE TAGASISIDE SAAMISEKS SUURTE SEMINARIDE ASEMEL VÄIKESEDE EKSPERTTIDE ARUETLURINGID**

Alternatiiv suurtele huvirühmade seminaridele on väikeste eksperdiarutelude korraldamine. Kuigi paljude osalejatega töötoad võivad anda mitmekülgset teavet, on see tagasiside sageli laialivalguv ja võib olla raske eristada kõige tähtsamaid tagasisidepunkte. Lisaks on oht, et paljude huvirühmadega korraldatud seminarid võivad projekti keset hajutada. Soovitame koguda tagasisidet kindlate huvirühmade seas korraldatud eksperdiaruteludes, mis esindaksid erinevaid vaatenurki, kuid pakuksid samas sisutihedat tagasisidet. See peaks aitama tagada võimalikult väikesed viivitused projekti elluviimisel. Huvirühmadega teabe jagamiseks soovitame siiski suuremaid seminare.

**MÄÄRATA PROJEKTILE SPETSIAALNE POLIITIKAAMETNIK EUROopa KOMISIONIST**

Kuivõrd liikmesriikide ministeeriumidel ei ole selliste uuringute ja rahusvaheliste projektide jaoks tavaliselt eraldi projektijuht, oleks kasulik, kui Komisjonis oleks spetsiaalne poliitikaametnik, kes juhendaks liikmesriigi ministeeriumi kogu projekti jooksul.

**KORRALDADA LIIKMESRIGIS FÜÜSILINE AVAKOOSOLEK**

Trinomicsi meeskonna kogemuse põhjal on projektis füüsiline avakoosolek sihtriigis tõhus viis projekt alustamiseks, et konsultandid ja klient saaks oma ootusi ühildada ja meeskond mõistaks sügavamalt kliendi jaoks olulisemaid aspekte.
### Vastused uurimisküsimustele

**Küsimus**

**Vastus**

1. **Kas 2030. aasta eesmärkide saavutamiseks piisab taastuvenergia vähempakkumist?**

   Pärast seda, kui on hinnatud kavandatud ja lõpuleviidud taastuvenergia vähempakkumiste tulemusi, on kõigis analüüsitud stsenaariumides endiselt puudu 2,7 kuni 7 GWh taastuvenergiast toodetud elektrienergiat. Sellises koguses lisaelektri toodang ei ole tõenäoliselt võimalik ilma spetsiaalse toetusega, sest investorid ei ole valmis võtma enda kanda kogu tururiski. Riskide vähendamise meetmed, mis võivad suurendada erainvesteeringuid, on näiteks riigigarantide laiendamine ja avaliku sektori kaasinvesteeringimine või riskide omavahel jagamine.

2. **Kas praeguste teadmiste ja modelleerimistulemuste põhjal oleks tuumaenergiasse investeerimine elluviidav ja turvaline?**

   Tuumaenergia toetumine on liiga riskantne strateegia, sest sellega kaasneb mitu riski, mis on peamiselt see seotud avaliku arvamuse ja tehnoloogiliste väljakutsetega (tuumaprojektides on ajalooliselt esinenud pikaajalisi viivitusi ja kulude ületamist). Huvirühmade vastuseis ei ole seotud tehnoloogia endaga, vaid seda mõjutavad näited teistest Euroopa riikidest (Ühendkuningriik, Prantsusmaa, Soome), kes on hiljuti püüdnud võtma see võimalus toetada võimalikku toodet, mida ei ole võimalik alles olla võimalik püüdnud toetada. Toetamine võimalik hoida kättesaadava, sest eesmärk on ära teha riikliku toetusega, sest riik ei ole valmis võtma enda kanda kogu tururiski.

3. **Millisest allikast saame elektrit kümne aasta pärast kümal ja pimedal talveööl?**

   Šnõõt on tingitud stsenaariumist, kuid üldiselt toodetakse 2030. aastate keskpaigas päikeseenergia kättesaadavuse välisel ajal energiat järgmistest allikatest:

   - mis tahes juhitav võimsus (põlevkivi, biomass, gaas, hüdroenergia);
   - tuuleenergia ja võrkudevahelised ühendused (import);
   - akupatareid (mõne stsenaariumi korral biogaas või pumphüdroenergia), mis täidavad kõik võimsuslüngad.

   Näiteks kahes kõige enam soovitatud stsenaariumis on 2030. aastaks ette nähtud järgmine kombinatsioon, kusjuures hinnanguline tippvõimsuse väärtus on 1000 MW:


   - Tootmine (TWh): maismaa tuuleenergia (3,9 TWh), avamere tuuleenergia (3,5 TWh), põlevkivi (2,2 TWh), päikeseenergia (1,4 TWh). See katab 105% aastastest riiklikust netovajadusest ja võimaldab aastal jooksul netoeksporti.

   - Kõik tehnoloogiad. Koguvõimsus: 5,6 GW, millest 46% on juhitav energia või 17% ilma akupatareideta. Juhitav võimsus moodustab 29% aastastest energiatoodangust. Peraid tehnoloogiaid on päikeseenergia (1507 MW), maismaa tuuleenergia (1479 MW) ja akupatareid (1607 MW).

   - Tootmine (TWh): maismaa tuuleenergia (3,8 TWh), põlevkivi (1,7 TWh), päikeseenergia (1,8 TWh). See katab 70% aastastest riiklikust netovajadusest, puudujäägi katab import.
Kõikide stsenaariumide korral on olemas juhitava võimsuse baas, mis hõlmab peamiselt põlevkivielektrijaamu (2030. aastal 676 MW), mis kasutavad hiljem biomassi, kuid ka väikeseid spetsiaalseid biomassi jaama (101 MW), maagaasi (2030. aastal enamikus stsenaariumides 70 MW), hüdroenergiat (8 MW), biogaasi (20 MW) ja jäätemeid (19 MW). Väheseid neist väiksematest lahendustest on majanduskult võimalik märgatavalt skaleerida. Suurima potentsiaaliga on maagaas, kuid see on vastuolus kliimaneutraalsuse eesmärgiga. Pikemas perspektiivis võiks kasutada ka tuumaenergiat.

4. Kas ja kui suures ulatuses on vaja säilitada teatav kogus kohalikku MW-võimsust elektrienergia varustuskindluse tagamiseks?

- Üks enamikus stsenaariumides soovitatud igal juhul kasulikest meetmetest on töötada välja uus paindlikkusstrateegia, mille eesmärk on soodustada akupatareide ja muude paindlikkust suurendavate tehnoloogiate kasutuselevõttu. Strateegias tuleks kaaluda alternatiivset raadiusele valmistamiseks. Olemasolev moodustamine turult võib aga tekitada määradeavatemid riske ja ülemääraseid hinnahüppeid. Seepraeg tugiks kasutusvõimsuse kõrvaldamise sõltumatu akupatareide ja juhitamatute energiaallikate kasutuselevõttust.
- Pikas perspektiivis on kõige kulutõhusam lahendus hästi toimiv ja läbipaistev paindlikkusünniste turg, mis on avatud tarbimise juhtimisele ja teistes riikides asuvatele rajastatele.

5. Milline on kõikumine ja impordist sõltuvuse muutus erinevate stsenaariumide puhul?

- Kõigis vaadeldud stsenaariumides (v.a süsiniku püüdmine ja kasutamine) kasutatakse piisavalt võimsust, et katta rohkem kui 100% kodumaisest elektrinõudlusest. Taastuvenergia ja salvestus ning kõik tehnoloogiad ilma netoimpordita on ainsad stsenaariumid, mis saavutavad selle eesmärgi 2030. aastaks.

6. Kas aastatel 2025–2030 on juba võimalik rajada avamere tuuleparke ja mida on selleks vaja teha (toetada)?

- Kuigi selle eesmärgi saavutamine 2025. aastaks on väga ebatõenäoline, on seda võimalik saavutada 2030. aastaks, kui lähitulevikus astutakse järgmised kolm olulist sammu.
  - Planeerimisprotsessi läbivaatamine (ühtne taotlusmenetlus).
  -arendajate toetamine eeluuringute korraldamisel. Näiteks võiks valitsus korraldada geoloogilisi ja arheoloogilisi teoreetilisi uurimusi, geotehnilisi ja geofüüsikalisi väliuuruinguid, merepõhja liikuvuse uurimusi, tuulevarude ja energiatootmise tasandatud kogukulde hinnanguid ja muuta need uuringud kättesaadavaks potentsiaalsetele pakkujatele taastuvenergia vähempakkumistest. Sarnast lahendust on juba kasutatud projektis ELWIND.
  - Tehnooloogiaspetsiifilise hinnatoetusmehhanismi määratlemine (nt hinnu alampiir või toetuspreemia).

Avamerevõrgu asjaomaste elementide lõpuleviiming (Balti ja Põhjamaade põhivõrguevõtjate alates) on lisa, mis suurendaks oluliselt avamere tuuleenergia kasutuselevõtust võimalusi 2030. aastaks.
7. Kas CO₂ hind ja taastuenergiasse tehtavate investeeringute vahel on otsene korrelatsioon (kas kõrgem CO₂ hind toob kaasa rohkem investeeringuid)?

See ei ole mitte CO₂ hind ise, vaid kõrge CO₂ hind ootus keskpikas plaanis ehk 5-10 aasta jooksul, mis on piisavalt kõrge, et hoida fossiilkütuste hulгimüügihinda kõrgemana kui on nende energetiootmise tasandatud kogukulud. Siiski on olulised ka muud kaalutlused, eelkõige:
- ootused tulevastele toetustele, mis võivad hiljem turule tuljata tulusid kahjustada (nt mida rohkem tuuleparke on tulevikus, seda madalam on hulгimüügihind, kui tuuleenergia on piirtootjana hinna kujundaja turul);
- ootused strateegilisele reservi kasutamisele, et piirata ajutiselt kõrgeid hindu, mis võiks olla kasulik taastuval energiaallikate seisukohast;
- hinnatoetussüsteemi olemasolu.

8. Kui realistlik oleks süsiniku püüdmine ja kasutamine Eestis ja millised on selleks vajalikud lisatehnoloogiad, kulud jne?

Auvere elektrijaama ja TG11 ploki kohandamine süsiniku püüdmise ja kasutamise süsteemiga, nagu asjaomases stsenaariumis on eeldatud, on elluviidav umbes 1 miljardi euroga. Selleks on vaja ümberehituse teave, mis võib saavutada pühendunud toetuse, mis on kõrghindu (nt mida rohkem tuuleparkide kasutamine võimaldab) ja muid valitud protsesside vajalikke tehnoloogiaid. Sellise investeeringu teavus oleks siiski vähene, kui ei leita muid võimalusi CO₂ kasutamises, nt ladustamiseks väljaspool Eestit.

9. Millised tegevused on vajalikud, et olla kooskõlas paketiga „Eesmärk 55“?

„Eesmärk 55“ ei nõua ühtki konkreetset meedet, kuid see eeldab CO₂ heitete vähendamist teatud hulgana. Selle eesmärgi saavutamiseks kõneleme teatud kasutamine kasutuselevõtule tagamiseks tuleb rakendada kõiki mainitud toetavaid meetmeid (planeerimis- ja loastamisprotsessi kiirendamine, energiaostulepingud, riskide vähendamise toetusteadlikused, kodumajapidamiste ja VKEde jaoks).


10. Millised stsenaariumid ja tegevuskavad oleks kõige sobivamad kliimaneutraalsuse saavutamiseks, lähtudes CO₂ vähendamise prognoosit ja sellega seotud tegevustest?

Heitet on kõikides stsenaariumides märkimisväärset vähendamist paketis „Eesmärk 55“ ettetahend. Süsiniku püüdmise ja kasutamise heited on kõrge vähendamisega, kuid see stsenaarium toodab kõigi vähem elektrit, oluliselt vähem elektrienergia vahandus. Kõik stsenaariumid on modellitööd eesmärgiga viia netoheide 2050. aastaks nullini, kasutades vajaduse korral otse õhust püüdmise tehnoloogiaid, et vähendada vähemeksi järelejäänud heitkoguseid.

11. Milline oleks võimsuste ja nende mõju ruumiline jaotumine iga stsenaariumi puhul?


12. Kui palju (millises ulatuses) on peale taastuenergia tegevuste (mida rahastatakse tarbivate seadmete ja/või väliskaitsetööde abil) võimalik suurendada investeeringuid tootmises ja/või välisinvesteeringuid ja/või välismaade energiatootmisele (gigawatt-tundides ja eurodes)?

<table>
<thead>
<tr>
<th>Miljoni eurot aastaks 2050</th>
<th>Investeeringud tootmises</th>
<th>Investeeringud ülekandesse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taastuenergia ja salvestus</td>
<td>11 040</td>
<td>355</td>
</tr>
<tr>
<td>Tuumaenergia</td>
<td>9338</td>
<td>230</td>
</tr>
</tbody>
</table>
Süsiniku püüdmine ja kasutamine (CCU) | 3065 | 135
Taastuvgaas | 8942 | 141
Kõik tehnoloogiad | 6972 | 155
Netoimpordita stenaarium | 8075 | 135
1000 MW juhitav võimsus | 7623 | 155

Tehniloogia- ja ülekandeinvesteeringutele on saadaval ELi ja teiste institutsionaalsete investitorite toetusrahastus. Näiteks selleks, et toetada süsiniku püüdmise ja kasutamise, võrkudevaheliste ühenduste, suurte paindlikkus- ja salvastusprojektide kasutuselevõttu.

13. Millised on finantsasutused ja nende peamised tingimused investeeringu plaanidega või toetuse saamiseks (projekti suurus eurodes ja kestus, asukoht, rahvusvaheline koostöö jne), samuti vajadus ja võimalused edukaks taotluseks?

Nii avaliku sektori algatuste kui ka erasektori arendajate jaoks on mitu võimalust. Sobivaim asutus ja toode sõltub vajadusest ja projektide tüübist. Üksikasjad on toodud 7. väljundis aruandelis D.

14. Millised on põhilised ja kõige olulisemad etapid ja tegevused/meetmed, et ühendada uute taastuvenergia võimsust ja salvastust puudutavate projektide ajakavasid?

Kolm peamist välja täotatud etappi on järgmised:

- **Vaadata üle planeerimisprotsess ja teha kindlaks etapid, mida on võimalik lihtsustada või lühendada (tegevus 1A).**
  - Ajakohastada taastuvenergiaarajatiste kinnitamismenetlust puudutavat õigusraamistikku, sealhulgas luua õhupinge kinnitamismeetod, mida on võimalik lihtsustada või lühendada.
  - Kehtestada maksimaalsed lubatud tähtajad planeeringute protsessi käigus.
  - Luua valdkondlikult ekspertide poolt koostatavad kulutajate ja omanike hinnangud ja kohusid planeeringu protsessis.

- **Anda projektide kinnitamise eest vastutavate kohalikele omavalitsustele rohkem haldusressursse (tegevus 1B).**
  - Näha riiklikul tasandil eetset tehnikat, et anda rahulikult õigustid ja tooted, mille järgi saab projekte pühendada.
  - Tulevikus peaks määrata teadlasi ja koolitada kohalikke planeerivaid.

- **Viia ellu hulk muid toetustegevusi (tegevus 1C).**
  - Teha kohustuslikke toetustegevusi, et anda saab planeerida ja koordinoerida projektide jaoks riikliku hulka.

Nii avaliku sektori algatuste kui ka erasektori arendajate jaoks on mitu võimalust. Sobivaim asutus ja toode sõltub vajadusest ja projektide tüübist. Üksikasjad on toodud 7. väljundis aruandelis D.
selle nõudega kohalike omavalitsuste tasandusfondist tehtavad maksed. See tegevus peaks olema lühiajaline (st hiljemalt kuni 2023. aasta lõpuni).

- Kui pärast eelmist tegevust ei ole kindlaks määratud alade arv piisav, määratletakse riiklikul tasandil uus ruumiline kava. Selle täpsemaks kvantifitseerimiseks tuleks korruldata lisauuringuid olenevalt valitud stseenariumist.
- Luua omavalitsustele võimalused saada taastuvenergia investeeringutest kasu oma halduspiirkonnas. Selleks võib olla kasum/tulu tagamise omavalitsustega, kaasfinantseerimine kohalike asutuste või energiakogukondade kaudu või otsesest ostulepingud.
- Tuleks uurida võimalusi, kuidas suurendada maismaa tuuleenergiaprojektiliste jaoks kasutatavaid maa-alasid. Peaks kaaluma mahajäetud tööstuspiirkondi ja vähekasutatud alasid (nt varem väljaarendatud alad, vähearenenunud tööstuspiirkond). Kombineeritakse kasutust (nt tööstuspiirkondades, ühispaiknemini muu taristuga) ja võimalusi alternatiivsete maismaa tuulegeneraatorite rajamiseks (nt labadeta tuulegeneraatorid).

15. Millised on kõige olulisemad eri huvirühmadega seotud meetmed ja kulud?

Planeeringute protsessi läbivaatamine
Meetme maksumus sõltub mitmetest teguritest (läbivaatamise ulatus ja stseenarium), kuid selle peamine mõju on lisanduvad personalikulud (riiklikul või kohalikul tasandil). Kulud kannavad keskvalitsus ja kohalik omavalitsus.

Taastuvate energiaallikate toetamine
Selle meetme maksumus sõltub tulevastest elektrihindadest ja see mõjutaks tarbijate arveid (kulud kannavad kõik tarbijad olenevalt oma tarifidest ja tarbimisest). Hinnanguline kulu 2030. aastal jääb vahemikku 0 (püsivalt kõrgete energiahindade korral) kuni 209 miljionit eurot aastas.

Elektrisüsteemi tasakaalustamine
Taasalaastamisprotsessi loomise kulu on võrreldes selle eelistega väikesed ja turuosalised maksaksid selle eest turutasu kaudu. Alginvesteeringu teeb süsteemi korraldaja ja see kantakse tarbijatele üle energiakasutuse jaoks, mis on osa RAB-mudelist.

Ülekandevõrgu tugevdamine
Lisanduvad investeerimiskulud jäävad olenevalt stseenariumist hinnanguliselt vahemikku 135-355 miljonit eurot (kogukulud kuni 2050. aastani). Need kulud kannab põhivõrguteevõtja (või eravara korral erainvestorid) ja need kaetakse tarbijatele käitumises võrgusäilituse kulude osas.


Kohaliku vastuseisu võimalusest ei piisa kohaliku kasu suurendamisest. Tegevuskavas pakutakse välja hulk tegevusi, tagamaks, et kohalikud kogukonnad tunneks end ülemirekasutuse rohkem kaasatuna ja saaks sellest otsest kasu:

- ühted kontaktpunktid;
- energiakogukond;
- rahaliste eeliste pakkumine kohalikele omavalitsustele, kes on aktiivsemad sobivate alade väljasehitamisel;
- kohalike kogukondade mehhanismide kindlaksmääramine, et nad saaks otsest kasu nende läheduses asuvatelt paigaldistelt.

17. Millised on vajalikud investeeringud (kulud), et kiirendada ülekande arendamist taastuvenergiast, salvestuse, nõudluse juhtimise jms jaoks?

Modelleerimisalalüüs pakub välja järgmised meetmed:
18. Milliste tehnoloogiate alusel oleks vajalik juhitav võimsus kõige kulutõhusam?

| Modelleerimisel ei nõutud kindlat juhitava võimsuse taset, nõudlus rahuldatakse kõigi stsenaariumide korral kas kodumaise tootmise või impordi kaudu. Vajaliku juhitava võimsuse tasemee määramine on strateegiline otsus. Siiski on erinevused stsenaariumide vahel suhteliselt väikesed, mis puudutab juhitava võimsuse osakaalu koguvõimsusest: 2030. aastal on see ligikaudu 40%, 2040. aastal 45% ja 2050. aastal ligikaudu 50%. Biomassil põhinev põlevkivi ja akupatareid annavad (kaugelt) suurima osa seljest võimsusest. Taastuvenergia ja salvestus (akupatareid), tuuma energia (tuumaenergia) ja kõik tehnoloogiad ilma netoimpordita (maagaas, tuumaenergia) on 2050. aastaks kõige suurema juhitava võimsuse osakaaluga (täielikud tulemused on esitatud 7. väljundi tegevuskava aruande lisas). |

19. Milliste allikate ja tehnoloogiate põhjal on tagatud meie varustuskindlus külmal talveajal 2030. ja 2050. aastal ja mida peaksime selle saavutamiseks tegema?

| Modelleeritud stsenaariumides on tagatud, et nõudlus rahuldatakse igal ajal, kui sageli toimub see akupatareide kaudu. Kõige väiksema juhitava võimsusega stsenaariumid sõltuvad rohkem impordist, kuid üldjuhul kataab puudujäägi eeldatav kogus akupatareisid. |

20. Milline oleks kõige realistlikum stsenaarium, võttes arvesse avaliku sektori kulud ja riikiiklikke makse, riske ja möju SKP-le, tulumaksu jne?

| Seitsme võimaliku uuritud stsenaariumi seast paistavad pakkuvat parimat tasakaalu kasu, kulude, riskide ja teostatavuse vahel „Kõik tehnoloogiad“ ning „Taastuvenergia ja salvestus (avamere tuuleenergia)“. Stsenaariumi „Taastuvenergia ja salvestus“ eelised on varustuskindlus, fossiilkütuste kasutamise piiramine, sotsiaalmajanduslik möju ja CO₂ heitkogused, kuid selle peamine puudus on kõrge hind. Tabel 2-1 pakub teavet sünneteistud hinde kohta ja lisas on toodud hinde aluseks olevad põhjendused. |
4 Seireindikaatorid

4.1 Peamised suundumused ja indikaatorid

Tabel 4-1 annab ülevaate projekti elluviimise näitajatest. Lõpetatud on kõik aruanded. Lisaks korraldati 5. aruande jaoks huvirühmadega kavavälised intervjuud, kuivõrd küsitlusele vastajaid oli vähe.

Tabel 4-1 Projekti elluviimise indikaatorite praegune seis

<table>
<thead>
<tr>
<th>Projekti elluviimise näitajad</th>
<th>Tulemused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Täidetud ja levitatud aruannete arv</td>
<td>9/9</td>
</tr>
<tr>
<td>Heakskiidetud projektiaruannete arv</td>
<td>8/8</td>
</tr>
<tr>
<td>Progressiaruannete arv</td>
<td>20/20</td>
</tr>
<tr>
<td>Juhtkomitee koosolekute arv</td>
<td>16/16</td>
</tr>
<tr>
<td>MKMiiga peetud progressikoosolekute arv</td>
<td>46</td>
</tr>
<tr>
<td>Muude huvirühmadega peetud koosolekute arv</td>
<td>17</td>
</tr>
</tbody>
</table>

4.1.1 Seminaride ülevaade


Tabel 4-2 Töötubade kokkuvõte

<table>
<thead>
<tr>
<th>Töötuba</th>
<th>Kuupäev</th>
<th>Osalejate arv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Töötuba 1: analüüsi raamistik (DLV3)</td>
<td>12.05.2021</td>
<td>57</td>
</tr>
<tr>
<td>Töötuba 2: tagasiside esialgsete tulemuste kohta (DLV3)</td>
<td>02.12.2021</td>
<td>Pole teada</td>
</tr>
<tr>
<td>Töötuba 3: tagasiside tegevuskava kohta (DLV 7)</td>
<td>22.02.2022</td>
<td>Umbes 40 (kliendi korraldatud seminar)</td>
</tr>
<tr>
<td>Töötuba 4: lõpptulemuste esitlus</td>
<td>11.05.2022</td>
<td>102</td>
</tr>
</tbody>
</table>

4.1.2 Intervjuude ülevaade

Aruande 5 koostamiseks korraldati seitse intervjuud, mis täiendasid riskianalüüsi küsimustiku tulemusi. Need intervjuud toimusid 2022. aasta jaanuaris huvirühmadega, kes esindasid erinevaid elektritootmise sektori tööstusarubusid. Tabelis 4-3 on loetletud intervjuueeritavad ja nende esindatav sektor.

Tabel 4-3 Väljundu intervjuueeritavad

<table>
<thead>
<tr>
<th>Organisatsioon</th>
<th>Esindaja</th>
<th>Kuupäev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taastuvenergia Koda</td>
<td>Mihkel Annus</td>
<td>12.01.2022</td>
</tr>
<tr>
<td>Tuuleenergia Assotsiatsioon</td>
<td>Terje Talv</td>
<td>14.01.2022</td>
</tr>
<tr>
<td>Tuumaenergiast huvitatud ettevõte Fermi OU (esindab ka Elektritööstuse Liitu)</td>
<td>Kalev Kallemets</td>
<td>17.01.2022</td>
</tr>
<tr>
<td>Biokütuste Uthing</td>
<td>Ulo Kask</td>
<td>12.01.2022</td>
</tr>
<tr>
<td>Keskonnauühenduste koda (EKO)</td>
<td>Johanna Maarja Tiik ja Ingrid Nielsen (Eestimaa Looduse Fond), Silver Sillak (Eesti Roheline Liikumine)</td>
<td>18.01.2022</td>
</tr>
<tr>
<td>Sunly (taastuvenergia arendaja ja investor)</td>
<td>Pritt Lepasepp</td>
<td>27.01.2022</td>
</tr>
<tr>
<td>Alexela (energianinvestor)</td>
<td>Marti Hääl</td>
<td>27.01.2022</td>
</tr>
</tbody>
</table>

Lisaks intervjuueeris projektimeeskond 25.05.2022 Erkki Sappi, Siim Limret ja Hardi Koduveret Erleringist (põhivõrguettevõtja).
### 4.2 Tulemuste jälgimine

<table>
<thead>
<tr>
<th>Väljund</th>
<th>Tööaja algus</th>
<th>Tööaja lõpp</th>
<th>Esialgne aruande esitamise aeg</th>
<th>Läbivaadatud aruande esitamise aeg</th>
<th>Lõpparuanne esitamise aeg</th>
<th>Lõpparuanne vastu võetud</th>
<th>Muutused ajakavas vörreldes lepinguga</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Algetapi aruanne</td>
<td>✔ ✔</td>
<td>14.10.2020</td>
<td>11.11.2020</td>
<td>18.11.2020</td>
<td>20.11.2020</td>
<td>ei kehti</td>
</tr>
<tr>
<td>2</td>
<td>Andmekogumis-aruanne</td>
<td>✔ ✔</td>
<td>12.02.2021</td>
<td>-</td>
<td>22.03.2021</td>
<td>22.04.2021</td>
<td>Viivitused, et kinnitada andmed Eleringi ja MKMi</td>
</tr>
<tr>
<td>3</td>
<td>Aruanne „Elektrisektori süsinikuheite vähendamise võimaluste modeleerimine“</td>
<td>✔ ✔</td>
<td>17.05.2021</td>
<td>6.08.2021</td>
<td>21.09.2021</td>
<td>05.11.2021</td>
<td>Viivutused, mille põhjustasid suvepuhkus, ulatuslik ajavahemik MKMi ja huvirühmade tagasiside saamiseks ning tagasiside labivaatamisele kulunud aeg</td>
</tr>
<tr>
<td>4</td>
<td>Sotsiaalmajandusliku mõju analüüs</td>
<td>✔ ✔</td>
<td>12.10.2021</td>
<td>09.11.2021</td>
<td>29.11.2021</td>
<td>detsemer 2021</td>
<td>Viivitused D3 lõpliku vormista-mise ajakulu tõttu</td>
</tr>
<tr>
<td>5</td>
<td>riskianalüüs</td>
<td>✔ ✔</td>
<td>03.01.2022</td>
<td>--</td>
<td>03.02.2022</td>
<td>15.02.2022</td>
<td>Viivitused D3 lõpliku vormistamise ajakulu tõttu</td>
</tr>
<tr>
<td>6</td>
<td>Tundlikkus-analüüs</td>
<td>✔ ✔</td>
<td>10.03.2022</td>
<td>02.05.2022</td>
<td>13.06.2022</td>
<td>Kinnitatud</td>
<td>Viivitused D3 lõpliku vormistamise ajakulu tõttu; tulemuste kinnitamiseks koos huviühendamaga kulus oodatust rohkem aega</td>
</tr>
<tr>
<td>7</td>
<td>Tegevuskavad elektritootmise süsinikuheite vähendamiseks</td>
<td>✔ ✔</td>
<td>10.03.2022</td>
<td>02.05.2022</td>
<td>21.06.2022</td>
<td>Kinnitatud</td>
<td>Viivitused V3 lõpliku vormistamise ajakulu tõttu; huvirühmade tagasiside kogumises koos tagasiside tagatud kraadi alusel tagatis eest toodetud aega</td>
</tr>
<tr>
<td>8</td>
<td>lõpparuanne</td>
<td>✔ ✔</td>
<td>10.03.2022 (juuni 2022)</td>
<td>--</td>
<td>27.07.2022</td>
<td>Kinnitatud</td>
<td>Viivitused D3 lõpliku vormistamise ajakulu tõttu</td>
</tr>
</tbody>
</table>

Pange tähele, et kuupäevad ( ) on unikaudsed.

### 4.3 Tulemusindikaatorid

Projekti seniste tulemuste põhjal pakume edasise ellurakendamise tulemuslikkuse mõõtmiseks välja järgnevad tulemusindikaatorid:

- **Elektritootmise süsinikuheide** (koguheide tn ja süsinikumahukus gCO2/kWh);
• Eeldavad keskmised tootmiskulud (diskonteeritud kogukulud €/MWh; investeeringukulud tehnoloogiate kaupa €/MWh);
• Energiasõltumatus (impordi osakaal kogu lõpptarbijasest);
• Planeeritud ja installeeritud võimsused tehnoloogiate kaupa (mere- ja maismaatuuleenergia, päikeseenergia ja akud MW);
• Põlevkivielektri tootmismahud (GWh);
• Taastuenergia osakaal energia lõpptarbijasest (%)
• Kliimaneutraalse elektritootmise osakaal energia lõpptarbijasest (%).
5 Peamised väljakutised

Selles peatükis selgitatakse peamisi probleeme, millega projektimeeskond väljunditega töötamisel silmitsi seisis, ning kirjeldatakse täpsemalt, mis toimus ja kuidas nende probleemidega toime tuldi.

Väljakutse 1: viivitused 3. aruande valmimisel

Selle projekti peamine väljakutse oli 3. väljundi ehk stsenaariumide modelleerimise lõpuleviimise hilinemine. Kuna 3. aruanne tulemus oli sisend järgmistele väljunditele, mõjutas viivitus omakorda ülejäänud ajakava. Viivituse haldamiseks oli vaja lisaaega aruande koostamiseks. Projektimeeskond suutis need aruanded hilisemal kuupäeval esitada, kuid see asjaolu tekitas probleemi projekti lõpuni.

Väljakutse 2: aruande 7 saavutamist mõjutati oluliselt


Väljakutse 3: stsenaariumide modelleerimise keerukus ja arvukad eritaotlused

Modellimeisel võeti arvesse rohkelt stsenaariume ja projektimeeskond sai hulganist konkreetseid taotlusi spetsiifiliste küsimuste analüüsiks. See ei tekitanud üksnes viivitusi, vaid põhjustas olukorra, kus projektimeeskonna jõupingutusi tuli jagada liiga paljude analüüsisuundade vahel. Meeskond sai kõigi täiendavate küsimuste ja stsenaariumide arvesse võtmisega hakkama, kuid see põhjustas projekti ajakava oluliselt.

Väljakutse 4: huvirühmade vähedest vastused riskiküsitlusele

6 Lisad: projekti aruanded ja Exceli failid

Kõik lisad, vältja arvatud lisa A, on esitatud eraldi

Lisa A: Kokkuvõtlik aruanne

Lisa B: 1. aruanne:

Lisa C: 2. aruanne ja seda toetavad Exceli failid

Lisa D: 3. aruanne ja seda toetavad Exceli failid

Lisa D.1: Mudeli tulemuste tabelid: Stsenaariumipõhised tabelid, mis sisaldavad mudeli peamisi tulemusi, on kättesaadavad sellel lingil (parool = estonia2050). Nende failide töötlemisel on rõhutatud suundumusi, mida käsitletakse failis „Vastused huvirühmade tagasisidele“, mis on koostatud Eesti huvirühmade küsimustele vastamiseks.

Lisa D.2: Aruande graafikute tööleht: Käesoleva aruande graafikute koostamiseks kasutatud töölehega saab tutvuda sellel lingil (parool = estonia2050).

Lisa E: 4. aruanne ja seda toetavad Exceli failid

Lisa F: 5. aruanne ja seda toetavad Exceli failid

Lisa G: 6. aruanne ja seda toetavad Exceli failid

Lisa H: 7. aruanne

I lisa: Seminaridel osalejate nimekiri


Lisa A - Tegevuste loetelu ja koondtabel

Alljärgnevatel joonistel esitatakse meetmete rakendamise soovituslik ajakava ja määratakse elluviimise eest vastutav asutus.

Joonis A-1. Kavandatud tegevuste soovituslik ajakava ja rollid (1/2)

<table>
<thead>
<tr>
<th>Year</th>
<th>Analysis &amp; review</th>
<th>Preparatory work</th>
<th>New Statute</th>
<th>Offshore renewable energy, other common infrastructure</th>
<th>Preparatory work</th>
<th>Advisory</th>
<th>Support relevant initiatives</th>
<th>Responsible body</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>Roll out and implementation national level</td>
<td>Establishment of the new regulator</td>
<td>New renewable auctions</td>
<td>Establish new renewable energy and other common infrastructure</td>
<td>New renewable auctions</td>
<td>Monitor implementation</td>
<td>Review environmental levy in energy bills</td>
<td>Ministry of Economic Affairs</td>
</tr>
<tr>
<td>2024</td>
<td>Implementation at local level</td>
<td>Preparatory work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Local authorities</td>
</tr>
<tr>
<td>2027</td>
<td>Built capacities in NAS</td>
<td>New Statute</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TSO</td>
</tr>
<tr>
<td>2030</td>
<td>Revised allocation of resources</td>
<td>Planning and permitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ministry of Finance</td>
</tr>
</tbody>
</table>

1.1 Streamline the infrastructure planning approval process
1.2 Increase administrative resources dedicated to planning and permissions
1.3 Supporting actions to speed-up the approval process
1.4 Set up a nuclear regulator
1.5 Review the mandate of the Estonian National Regulatory Agency
1.6 Set up an Energy and Climate Agency
1.7 Increase cross border cooperation
2.1 Actions to stimulate the uptake of Power Purchase Agreements (PPAs)
2.2 Amend the current renewable electricity auction scheme
2.3 Funding for renewable electricity in the fossil gas bill or to other funds
2.4 Extend the current size of state guarantees
2.5 Opportunities for public co-investing and sharing risks
2.6 An on-site small scale renewable generation support scheme
2.7 Allow households and SMEs to invest in remote renewable electricity generation

Priority Action
Action relevant only in some pathways
Allolevas tabelis on iga stsenaariumi puhul ära toodud esmatähtsad tegevused. Esmatähtsaid tegevusi mõistetakse kui samme, mis on stsenaariumi elluviimisel kriitiliselt olulised, ning toetavaid tegevusi kui olulisi, kuid vähem kriitilisi samme.

**Tabel A-1 Tegevuste loetelu**

<table>
<thead>
<tr>
<th>Tegevusteepakett</th>
<th>Meetmed</th>
<th>Taastuvenergia ja salvestus</th>
<th>Tuumaenergia</th>
<th>Süsiniku püüdmine ja kasutamine (CCU)</th>
<th>Taastuv-gaas</th>
<th>Kõik tehnoloogiad</th>
<th>Netoimpordita stsenaarium</th>
<th>Kõik tehnoloogiad 1000 MW</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1. Planeerimine</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A. Tõhusata taristu planeerimise kooskolastamist</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>1B. Suurentada planeerimisele ja lubade menetlemisele suunatud haldusressurve</td>
<td>E</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>1C. Tugitmeetmed kooskolastamise kiirendamiseks</td>
<td>E</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td><strong>2. Institutsiooniline reform</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A. Luua tuumaenergeetikat reguleeriv asutus</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>2B. Vaadata läbi Eesti riikliku reguleeriva asutuse (Konkurentsiameti) volitused</td>
<td>E</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C. Luua energia- ja kliimaamet</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>2D. Suurentada piirülest koostööd</td>
<td>E</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T</td>
</tr>
<tr>
<td><strong>3. Riskide vähendamise vahendid</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A. Meetmed energiaostulepingute kasutuselevõtust stimuleerimiseks</td>
<td>E</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>3B. Muuta taastuvenergia vähempakkumiste süsteemi</td>
<td>E</td>
<td>E</td>
<td></td>
<td></td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>3C. Viia kogu taastuvenergia rahastamine või osa sellest üle maagaasi või muude vahendite arvele</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>3D. Laienda KredExi pakutavate riigigarantide praegust mahtu ja töötada välja laiem riigigarantide raamistik</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>3E. Avalik kaasinvesteerimine ja riskide jagamine</td>
<td>E</td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>4. Taastuvenergia kodumajapidamistele ning väikese ja keskmise suurusega ettevõtetele</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A. Koostada kohapealse väikesemahulise taastuvenergiatootmise toetusavaa koos muude meetmetega, et stimuleerida hoonete renoveerimist</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>4B. Võimaldada kodumajapidamistel ning väikese ja keskmise suurusega ettevõtetele taastuvenergia kaugtootmiset</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td><strong>5. Elektrivõrgud</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5A. Tootada välja riiklik pandlikkustruktuureegia</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>E</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>5B. Vaadata üle lähennemine elektrisüsteemi tasakalastamisele</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Aruann</td>
<td>Taastuvenergia ja salvestus</td>
<td>Tuumaenergia</td>
<td>Süsiniku püüdmine ja kasutamine (CEU)</td>
<td>Taastuvõrga</td>
<td>Kõik tehnoloogiad</td>
<td>Netoimpordita stsenaarium</td>
<td>1000 MW juhtiv võimsus</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td><strong>5C. Parandada akutehnoloogia majanduslikku eluõõnust ja juurdepääsu rahastamisele</strong></td>
<td>E</td>
<td>E</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td><strong>5D. Kaotada toetelt võrgutasud võrguga ühendatud salvestuse eest</strong></td>
<td>E</td>
<td>E</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td><strong>5E. Luua nõudluse juhtimise raamistik</strong></td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td><strong>5F. Muud meetmed salvestuse oskusteabe toetamiseks ja takistuste vähendamiseks</strong></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td><strong>5G. Kaaluda alternatiivseid projekteerimismuduleid ja rahastamisehaneemite peamiste avamereetapide jaoks</strong></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td><strong>5H. Tugevdada ülekanke- ja jaotusvõrgu taristud</strong></td>
<td>E</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td><strong>6. Kodanikuühiskonna kaasamine</strong></td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td><strong>6A. Käivitada uue taastuvenergia strategia vastuvõtmisel teavituskampaania</strong></td>
<td>E</td>
<td>E</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td><strong>6B. Seada sisse ühtset kontaktpunktid</strong></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td><strong>6C. Kohalikud tegevrühmad</strong></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td><strong>6D. Hõlbustada kodanikuhendust ja taastuvenergiakogukondade tegevust</strong></td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td><strong>7. Muud meetmed</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Toetada haavatavaid leibkondi</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>2. Arendada oskusi parandada akutehnoloogia majandusliku eluõõnust ja juurdepääsu rahastamisele</td>
<td>T</td>
<td>E</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

**E** = esmatähtis | **T** = teotav tegevus

**Tabel A.2. Kokkuvõtlik tabel**
<table>
<thead>
<tr>
<th>Aruann</th>
<th>Taastuenergia ja salvestus</th>
<th>Tuumaneeringa</th>
<th>Süsiniiku püüdmine ja kasutamine (GJ)</th>
<th>Taastuveega</th>
<th>Kõik tehnoloogiad</th>
<th>Neteimportita staarnaarium</th>
<th>1000 MW juhivad võimsus</th>
</tr>
</thead>
<tbody>
<tr>
<td>ühined hinnang</td>
<td>SOOVITATAV</td>
<td>EI SOOVITA</td>
<td>EI SOOVITA</td>
<td>SOOVITATAV</td>
<td>SOOVITATAV</td>
<td>Samuti teostatav</td>
<td>Samuti teostatav</td>
</tr>
<tr>
<td>Alternatiivne pingeri</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Stsenaaariumi analüüs</td>
<td>-1 GW avameeröörd juhitava tšenni 2030.</td>
</tr>
<tr>
<td>-0,9 GW tšennienergia eest 2040.</td>
<td>+1 GW paikneenergia eest 2040.</td>
</tr>
<tr>
<td>100% tšenni</td>
</tr>
<tr>
<td>Suureneb biomassi kasutamine, põlevkivelektrofitoite (2050), astakts toodetakse sel moel üle 3 TWh elektrienergiat.</td>
<td>Suureneb biomassi kasutamine, põlevkivelektrofitoite (2050), astakts toodetakse sel moel üle 3 TWh elektrienergiat.</td>
<td>Suureneb biomassi kasutamine, põlevkivelektrofitoite (2050), astakts toodetakse sel moel üle 3 TWh elektrienergiat.</td>
<td>Suureneb biomassi kasutamine, põlevkivelektrofitoite (2050), astakts toodetakse sel moel üle 3 TWh elektrienergiat.</td>
<td>Suureneb biomassi kasutamine, põlevkivelektrofitoite (2050), astakts toodetakse sel moel üle 3 TWh elektrienergiat.</td>
<td>Suureneb biomassi kasutamine, põlevkivelektrofitoite (2050), astakts toodetakse sel moel üle 3 TWh elektrienergiat.</td>
<td>Suureneb biomassi kasutamine, põlevkivelektrofitoite (2050), astakts toodetakse sel moel üle 3 TWh elektrienergiat.</td>
<td>Suureneb biomassi kasutamine, põlevkivelektrofitoite (2050), astakts toodetakse sel moel üle 3 TWh elektrienergiat.</td>
</tr>
<tr>
<td>Viljumuneselne vitamiinilise tootmise alustamise üle 1000 MW elektrienergiat.</td>
</tr>
</tbody>
</table>

31 Kõik ülemas ja teadmised, sealhulgas põlevkivi. Põlevkivi annab tootmisel olulise panuse veel 2030. aastal, misjärel asendatakse see kõigi stsenaaariumides - välja arvatud suisiniku püüdmine ja kasutamine - biomassiga.
<table>
<thead>
<tr>
<th>V</th>
<th>Taastuvenergia ja salvestus</th>
<th>Tuumaenergia</th>
<th>Süsiniküüdimine ja kasutamine (CCU)</th>
<th>Taastuvaas</th>
<th>Kõik tehnoloogiad</th>
<th>Netoimpordita stenaaarium</th>
<th>1000 MW juhtivav võimsus</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Taastuvenergia on toodetav. Kõikast tehnologiast võimalikud toodud 2050. aastal:</td>
<td>0,1 TWh (põlevkiviööli)</td>
<td>0,4 TWh</td>
<td>0,1 TWh</td>
<td>0,0 TWh</td>
<td>0,1 TWh</td>
<td>0,4 TWh</td>
</tr>
<tr>
<td>4</td>
<td>Sotsiaalmaidanduslik mõju</td>
<td>++ soodne mõju SKP-le, eriti avatud rahastamise korral</td>
<td>0 neutraalse mõju tööhõivele; avatud rahastamise korral on mõju soodne, omamisestringu korral ebasoodne.</td>
<td>++ soodne mõju SKP-le; eriti avatud rahastamise korral</td>
</tr>
<tr>
<td>6</td>
<td>Tundlikkusanalüüs</td>
<td>++ soodne mõju SKTle, eriti biomasisti kõrgema hinnaga korral (S3)</td>
<td>++ soodne mõju SKP-le, välja arvatud sunnivõimistlik 92% juhtivate korral (S2), sti väike negatiivne mõju</td>
<td>++ soodne mõju SKP-le; ++ soodne mõju tööhõivele; ++ mõõdukas soodne mõju tööhõivele</td>
<td>++ soodne mõju SKP-le; ++ soodne mõju tööhõivele; ++ mõõdukas soodne mõju tööhõivele</td>
<td>++ soodne mõju SKP-le; ++ soodne mõju tööhõivele; ++ mõõdukas soodne mõju tööhõivele</td>
<td>++ soodne mõju SKP-le; ++ soodne mõju tööhõivele; ++ mõõdukas soodne mõju tööhõivele</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peamised rakendusprobleemid</td>
<td>1. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>2. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>3. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>4. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>5. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>2. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>3. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>4. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>5. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>2. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>3. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>4. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>5. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>2. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>3. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>4. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>5. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>2. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>3. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>4. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>5. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>2. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>3. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>4. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>5. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>2. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>3. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>4. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td>5. A. Tõhusata taristu planeerimist elektrotühistuline seadus ja lüüakse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Vaja soodne (+):** mõõdukalt soodne (++); neutraalne / mõju pole (0); mõõdukalt ebasoodne (-): vaga ebasoodne (-)
**Ilisas: Seminaridel osalejate nimekiri**

**STSENAARIUMIDE MODELLERIMISE SEMINARIL OSALEVATE ORGANISATSIOONIDE NIMEKIRI (12. MAI 2021)**

<table>
<thead>
<tr>
<th>Tartu Regiooni Energiagentuur</th>
<th>Eesti Soojuspumba Liit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keskkonnainvesteeringute Keskus</td>
<td>Tartu Ülikool</td>
</tr>
<tr>
<td>AŠ Tootsi Turvas</td>
<td>Eesti Maäülikool</td>
</tr>
<tr>
<td>Eesti Roheline Liikumine</td>
<td>Eesti Keskkonnauringute Keskus</td>
</tr>
<tr>
<td>Eesti Vesinikuühing</td>
<td>Nomine Consult</td>
</tr>
<tr>
<td>Eesti Energia</td>
<td>Erametsakeskus</td>
</tr>
<tr>
<td>Riigikontroll</td>
<td>Eesti Jõujaamade ja Kaugküte Ühing</td>
</tr>
<tr>
<td>Tallinna Sadam</td>
<td>PwC</td>
</tr>
<tr>
<td>Keskkonnaamistuteerium</td>
<td>Eesti Elektritööstuse Liit</td>
</tr>
<tr>
<td>Eesti Gaas</td>
<td>Viru Keemia Grupp</td>
</tr>
<tr>
<td>Eesti alaline esindus Euroopa Liidu juures</td>
<td>Eesti Linnade ja Valdade Liit</td>
</tr>
<tr>
<td>Tallinna linn</td>
<td>KPMG</td>
</tr>
<tr>
<td>Estonian Cell</td>
<td>Etevõtuse Arendamise Sihtasutus</td>
</tr>
<tr>
<td>LHV</td>
<td>Fermi Energi</td>
</tr>
<tr>
<td>Cleantech For Estonia</td>
<td>BALTIC BIOENERGY OÜ</td>
</tr>
</tbody>
</table>

**LÕPPTULEMUSTE ESITLEMISE SEMINARIL (11. MAI 2022) OSALEJATE NIMEKIRI**

<table>
<thead>
<tr>
<th>Ain Laidoja</th>
<th>Irje Möldre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aire Rihe</td>
<td>Ivan Sergejev</td>
</tr>
<tr>
<td>Airiin Lisbet Strandson</td>
<td>Ivo Krustok</td>
</tr>
<tr>
<td>Ando Möldre</td>
<td>Jaanus Arukaevu</td>
</tr>
<tr>
<td>Andrea Demurtas</td>
<td>Jaanus Uiga</td>
</tr>
<tr>
<td>Andres Levald</td>
<td>Jelena Šuvalova</td>
</tr>
<tr>
<td>Anna Volkova</td>
<td>Johanna Lehtmets</td>
</tr>
<tr>
<td>Ants Kippasto Varmata</td>
<td>Jovana Jovovič Komnenič (DG REFORM)</td>
</tr>
<tr>
<td>Antti Roose</td>
<td>Julia Vahtraorg</td>
</tr>
<tr>
<td>Anu Ainsaar</td>
<td>Kaarel Jännes</td>
</tr>
<tr>
<td>Argo Rosin</td>
<td>Kädi Ristikok</td>
</tr>
<tr>
<td>Arvi Hamburg</td>
<td>Kadi Steinberg</td>
</tr>
<tr>
<td>Nathalie Berger (DG REFORM)</td>
<td>Kaia Oras</td>
</tr>
<tr>
<td>Bert Lõuke</td>
<td>Kaie Küngas</td>
</tr>
<tr>
<td>Birgit Parmas</td>
<td>Karin Kondor-Tabun</td>
</tr>
<tr>
<td>Enn Lust</td>
<td>Karl Annus</td>
</tr>
<tr>
<td>Eva-Ingrid Rööm</td>
<td>Karmo Kübarsepp</td>
</tr>
<tr>
<td>Gowatham Muthukumaran</td>
<td>Koen Rademaekers</td>
</tr>
<tr>
<td>Hannes</td>
<td>Kristina Joon</td>
</tr>
<tr>
<td>Heidi Koger</td>
<td>Kristiina Toots</td>
</tr>
<tr>
<td>Helen Saarmets</td>
<td>Kristin Puusepp</td>
</tr>
<tr>
<td>Helena Gailan</td>
<td>Kristjan Kalda</td>
</tr>
<tr>
<td>Helle Truuts</td>
<td>Kristo Kaasik</td>
</tr>
<tr>
<td>Imre Bnysz</td>
<td>Kulno Kesküla</td>
</tr>
<tr>
<td>Ingrid Nielsen (Eestimaa Looduse Fond)</td>
<td>Madis Laaniste (DG ENER)</td>
</tr>
</tbody>
</table>