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Key messages
• Policymakers should recognize the need for a comprehensive approach to hydropower 

that balances environmental protection with renewable energy goals.

• A potential shift towards utilizing wind power as baseload and hydropower as 
a flexibility source will change flow release patterns from reservoirs and affect 
aquatic life. 

• Increased hydropeaking levels may pose challenges to maintaining the ecological 
status of rivers, which are rich in biodiversity and ecosystem services. 

• The knowledge gap of how major changes in the energy industry will potentially 
change hydropower reservoir operation practices and our river flows should be 
addressed. 

Hydropower can serve as more than a source of baseload electrical capacity, and its 
storage applications are increasingly vital in achieving greater system flexibility and 
balancing intermittent renewable energy sources (United Nations, 2020). Upgrading 
existing hydropower facilities to increase power output and optimize multiple water 
demands, however, requires significant investments. Therefore, it is essential to 
develop models that aid in decisionmaking regarding hydropower capacity expansion 
by exploring strategies that meet both energy demand and environmental targets. 
This includes examining the role and added value of innovative technologies, as well as 
identifying the optimal time to invest (Heuberger et al., 2017).

Sweden is a representative case for countries where hydropower is important in the 
energy transition. Traditionally a source of baseload electricity, hydropower’s role 
will change in the future as the share of other renewable energy sources (wind, solar) 
increases in the energy mix, thus requiring its flexible load balancing capabilities for a 
well-functioning, balanced grid. 

At the same time, pressure on water ecosystems and biodiversity can increase due 
to these changes. Hydropower regulations in Sweden are under revision in order to 
balance these two perspectives, but key questions to address in this context remain: 
What is the future role of hydropower with regards to the challenges that electricity 
grids are facing under increased demand? What social, technical and organizational 
innovations are needed to address future energy and water demands while 
safeguarding water, ecosystems and biodiversity?
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In this brief, we discuss the trade-offs and challenges Swedish hydropower is facing in 
recent years and offer policy recommendations on how to balance them. These insights 
are based on literature review of the latest academic and grey literature, as well as 
material from stakeholders and authorities directly involved with the energy transition 
in northern Sweden. More specifically, we look into three major aspects: the changing 
role of hydropower in the energy transition, challenges related to hydropower’s impacts 
on the freshwater environment, and how recent changes to governance frameworks 
can lead to new trade-offs between energy and biodiversity to consider. Finally, we offer 
policy recommendations addressing the main issues we see as necessary to address for 
improving hydropower planning processes.

1. Hydropower in Sweden

Sweden’s hydropower production averages 65 Terawatt-hours (TWh)/
year, with a dam energy storage capacity of 34 TWh, accounting for 
25% of the country’s annual electricity consumption. Hydropower is 
generated across approximately 2100 stations across the country (see 
Figure 1) with a combined installed capacity of 16.2 Gigawatts (GW). 
Most of the Swedish hydropower (around 95%) is produced in 208 
stations (less than 10% of the total number of hydropower stations) 
(Energimyndigheten & Havs- och Vattenmyndigheten, 2014). 

The Swedish energy market is supported by a very high share of dam 
hydropower generation capacity which has high flexibility potential 
at various timescales (Svenska Kraftnät, 2022a). Hydropower also 
dominates the electricity grid’s frequency regulation services in the 
flexibility market, delivering energy in only a few seconds to meet 
immediate needs or up to a month ahead, which help energy networks 
create necessary signals to adjust energy supply and demand. Such 
markets will be very important for efficiently utilizing intermittent 
renewable energy sources and further promoting grid decarbonization. 

As battery storage deployment in the Swedish grid increases, it can 
be expected that the share of batteries in some of these frequency 
regulation services will increase, but hydropower will still play a vital 
role in balancing the system.

2. The role of hydropower in the energy transition

Northern Sweden will probably experience extreme increases in energy demand due 
the expansion of industrial activities in the area, such as the fossil-free steelmaking 
ventures of HYBRIT and H2 Green Steel, steelmaking (SSAB), mining (LKAB), and 
battery production (Northvolt). 

About 80 TWh/year are needed to cover northern Swedish industrial electricity demand 
by 2028, without considering data centres or household consumption expansions 
(Region Norrbotten & Energikontor Norr, 2022). For reference, the total electricity 
use in the country was 135 TWh in 2020 (Energimyndigheten, 2022), so that would be 
approximately 60% of today’s use. There are plans to increase electricity grid capacity 
by 5000 MW to connect 4000 MW of renewable energy production, mostly from new 
wind power installations (Svenska Kraftnät, 2022b). The goal is to have 100 TWh of wind 
power by 2040, with 80% coming from onshore wind (Energimyndigheten, 2021a).

Figure 1. Swedish hydropower plants above 3 MW (red triangles) 
and water districts (black lines). 
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Increased hydropower output can be 
achieved in two ways: by upgrades and 
more effective use of existing plants, or by 
exploiting protected rivers. Improvements 
in turbine design and control systems, 
implementation of machine learning and 
predictive algorithms, and better resource 
management, for example, are estimated 
to lead to an 8–10% increase in power 
generation (O’Connor et al., 2016). Major 
increases in hydropower output, though, 
should not be expected for countries like 
Sweden which have a strongly established 
capacity and environmental regulations 
that seek to protect unexploited rivers. 
In Sweden, this is a recent and long-term 
process encapsulated in The National Plan of 
Hydropower Permit Review (NAP) to promote 
efficiency upgrades in existing hydropower 
stations while limiting negative effects on the 
existing water bodies.

The Swedish electricity grid faces pressure 
for quick upgrades to the transmission lines 
due to industry expansion; hydropower and 

wind power can provide capacity and flexibility, but upgrades are needed for intermittent 
sources. The current situation also presents opportunities to modernize hydropower plants 
and enable them to provide vital services to power systems, including pumped hydropower 
which has received increased attention in recent years with more abundant intermittent 
renewable energy sources that benefit from its storage potential (IRENA, 2023).

Another factor to weigh in the equation is climate change, which will shift snow 
timing and glacier melt as well as precipitation patterns (Mishra et al., 2020). Swedish 
hydropower production, for example, is predicted to be similar to today’s levels by 
2050, with slight net increase (0.5 TWh) balancing climate change impacts and stricter 
regulations (Energimyndigheten, 2021b; Svenska Kraftnät, 2021). However, other studies 
point out an increase in hydropower potential in the Nordic region based on hydrological 
projections, as climate models like CaEMS2 and MPI-EMS-LM project a large increase in 
precipitation (Chernet et al., 2013; Shevnina et al., 2018). Questions remain as to whether 
current governance models are prepared for the future role of hydropower. Increased 
hydropower production will also have consequences for ecosystems’ biodiversity. 

3. Impact of hydropower on the freshwater 
environment

Hydropower production has a significant impact on the seasonal distribution of 
flow and alters sub-daily flow patterns, causing a loss of biodiversity and negatively 
affecting river ecosystems (Arheimer et al., 2017). In an average year, Sweden 
redistributes 19% of its river waters by regulation, including both regulated and 
unregulated rivers (Arheimer & Lindström, 2014). As a result of dam storage, 
spring peak flows have been diminished by 15%, while winter flows have increased 
considerably (Arheimer & Lindström, 2014). Also, flow duration curves show dampening 
of both high and low flow extremes due to regulation.

Term Explanation

River regulation
The management and control of river flow through the construction 
of hydraulic structures like dams, reservoirs, and weirs, or through the 
implementation of various water management practices.

Baseload power

The lowest amount of electricity demanded by an electrical supply 
system, usually throughout a 24-hour period. Baseload power sources are 
plants capable of consistently producing power to meet steady demand. 
Hydropower and nuclear plants are usually producing baseload power. 

Electricity grid
An interconnected network of power generation, transmission and 
distribution facilities that enables supply of electricity from power plants 
to consumers. 

Intermittent energy 
sources

Intermittent power sources refer to renewable energy generation 
technologies that produce electricity in an unpredictable or varying 
manner due to their dependence on environmental conditions. Solar and 
wind power are common examples of intermittent energy sources. 

Hydropeaking
An artificial pattern of river flow that occurs when the output of a 
hydroelectric dam is increased during periods of peak electricity demand.

Multi-stakeholder 
platforms

These physical or digital (often a mix) spaces where stakeholders from 
across society participate in the decisionmaking process and information 
sharing at the country level. Platforms can have different levels of 
formality, including supporting and advising a process or an organization, 
or taking decisions at one or several stages in a process. 

Table 1. Glossary of useful terms in the energy-water nexus field. 
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Long-term river regulation of large boreal rivers in northern Sweden by hydropower dams 
has resulted in the loss of biodiversity, including the loss of a large proportion of main 
stem shallow flowing habitats (Englund & Malmqvist, 1996; Jansson et al., 2000; Nilsson 
et al., 1991). The upstream migration of Atlantic salmon in many Baltic Sea rivers has 
been eliminated or substantially reduced due to damming and hydropower generation 
(Rivinoja et al., 2001). There have been notable declines in the populations of brown trout 
and grayling (Heggenes et al., 1996; Saltveit et al., 2001). Brown trout is no longer present 
in the main stem, and only remnants of grayling populations remain, as reported by 
Widén et al. (2021).

Another issue is how hydropeaking, the sudden release of water from hydropower 
reservoirs to meet energy demand, is deployed. Northern Swedish rivers like the Ume, 
for example, have shown high levels of hydropeaking (Alonso et al., 2017). Because of the 
detrimental environmental impacts of hydropeaking, there are growing concerns about 
escalating trends in hydropeaking associated with the rise in wind energy penetration, both 
in the Nordics and globally (Ashraf et al., 2018; Haas et al., 2015; Jager et al., 2022) .

Hydropeaking causes artificial fluctuations in downstream flow, affecting hydrologic 
parameters and water quality. Hydropeaking on downstream ecosystems negatively 
impacts aquatic organisms (Casas-Mulet et al., 2016; Harnish et al., 2014); destroys fish 
habitats (García et al., 2011); alters hyporheic habitats, the areas of the streambed and 
near-stream aquifers through which stream water flows (Cristina Bruno et al., 2010); causes 
thermal regime disturbances (Choi & Choi, 2018); and degrades recreational services 
(Brown et al., 1991; Brunson & Shelby, 1993). River regulation may also cause riparian 
vegetation homogenization by filtering out species that lack traits required to bear this 
artificial phenomenon and cause invasion by exotic species (Jansson et al., 2000). 

As a result, recent discussions have focused on restoring ecological flows in constructed 
rivers to achieve good ecological status as required by the EU Water Framework Directive 
(Voulvoulis et al., 2017). As the demand for hydropower increases, water management in the 
Nordic countries has become an important issue to improve hydropower production and 
balance load demands (Latola & Savela, 2017).

4. Hydropower governance in Sweden

In 2018, Sweden made changes to legislation affecting hydropower production and river 
restoration. In a joint national strategy planning document, the Swedish Agency for Marine 
and Water Management (SwAM) and the Swedish Energy Agency (STEM) set a limit of 
2.3% loss of the annual hydropower production, equal to 1.5 TWh/year, that river restoration 
measures related to hydropower production should be allowed to cause on a national level 
(Energimyndigheten & Havs- och Vattenmyndigheten, 2014). Sweden’s national strategy for 
hydropower is geared towards flexibility and efficiency-increasing measures in existing large-
scale (>10 MW) hydropower installations. Furthermore, it is envisioned that passage facilities 
and minimum flow should be established in 60 large hydropower stations with conditions 
favourable for fish passage and all smaller hydropower stations (< 10 MW) (HaV, 2019).

In addition, the NAP is meant to coordinate the permit review process at a national scale 
over the coming 20 years. It encourages modification of existing hydropower stations 
to increase their installed effect and production capacity, while also prioritizing river 
restoration. A private fund financed by major producers will cover most costs of these 
measures (HaV, 2019). However, by increasing the installed effect and production capacity 
of existing large-scale stations’ hydropower, the rate and scale of change of river flow will 
also increase, potentially augmenting the ecological damage in the affected river basins 
(Bejarano et al., 2017). 



  5

Due to the recent energy price crisis, the process for the permit reviews has been 
paused for a year (Regeringskansliet, 2022). While energy companies welcome the 
decision with regards to the ongoing energy system challenges (Energiföretagen, 
2022), environmental organizations focused on river habitats warn that such decisions 
are disrupting long-term anchoring processes, and not only risk the extinction of many 
fish species, but also high fines from the EU Commission for Sweden’s failure to comply 
with the Water Directive (Älvräddarna, n.d.; Lexén et al., 2023). 

There are thus important questions, trade-offs and hurdles that the implementation 
of the NAP will face, and new analytical tools will be needed for offering solutions that 
balance energy needs with biodiversity requirements. 

5. Recommendations to improve hydropower 
planning 

There is a need for more comprehensive systemic environmental assessments of 
water and energy infrastructures and their implications for riverine ecosystems in their 
specific locations, as these share the same water resources. Such assessments should:

• enhance efficient and coherent planning for dam operation, energy generation and 
industrial output

• address synergies and trade-offs between sustainability goals, environmental 
targets, economic policies and social development that may evolve based on various 
hydropower dam operation scenarios, hydroclimatic conditions, and socioeconomic 
development pathways. 

The multifaceted challenges presented by climate change and the transition towards 
a fossil-free society are disrupting the traditional paradigm of hydropower as a clean, 
renewable and sustainable source of electricity. Northern Sweden is a perfect example 
where these issues have already come into play, but more regions around the world 
will face similar challenges. Policymakers should therefore recognize the need for 
a comprehensive approach that balances environmental protection with renewable 
energy goals.

• Policy recommendation: Ensure the review process facilitated by the NAP is 
evidence-based. Better models and data need to show efficiency and effectiveness 
beyond electricity production to also include environmental and socioeconomic 
impacts in the context of hydroclimatic change. Outcomes should suggest actions 
that give more bang for the buck across all pillars of sustainability, including the 
places or interventions that would provide most gains and least impacts. 

The shift towards utilizing wind power as baseload and hydropower as a flexibility 
source raises questions about the implications for water systems and biodiversity. 
Coordinating with industrial actors that are already established or planning to establish 
operations in northern Sweden is crucial to ensure a coherent plan for upgrading the 
electricity grid to meet the growing demand.

• Policy recommendation: Foster collaboration between local authorities, water 
authorities, transmission and distribution grid operators, hydropower operators, 
wind power developers, and other relevant stakeholders to develop coordinated 
strategies that optimize grid upgrades and renewable energy source utilization, 
considering the environmental impacts on water systems and biodiversity.
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Previous research has shown that there is significant potential for efficiency 
improvements in hydropower operations and measures to promote biodiversity.

• Policy recommendation: Revise hydropower planning processes to include 
community involvement, incorporating social and environmental perspectives into 
decisionmaking. Ensure that the benefits and impacts of hydropower projects 
are shared equitably among affected communities, spread justly throughout the 
country, and account for intragenerational justice.

The increase in hydropeaking levels may pose challenges to maintaining the ecological 
status of rivers, which are rich in biodiversity and ecosystem services. The potential 
effects of hydropeaking require more detailed evaluation, particularly in Nordic rivers. 
Sustainable river management needs methodologies to quantify hydropeaking and its 
relationship with power market demands.

• Policy recommendation: Conduct thorough assessments to understand the 
ecological impacts of hydropeaking on rivers and develop operational practices 
that balance the needs of ecological conservation, economic development, and 
social impacts. This could include incorporating environmental flow requirements 
into hydropower operation scheduling, optimizing dam release patterns to minimize 
ecological disruptions, and exploring the potential for energy storage technologies 
to mitigate hydropeaking impacts.

Currently, there is a knowledge gap regarding the impacts of major changes in the 
energy industry on hydropower reservoir operation practices. A significant share of the 
data needed for such analyses is unfortunately not open access. 

• Policy recommendation: Invest in research, data collection, and open data 
management to improve understanding of the effects of changing energy industry 
demand on hydropower reservoir operations. Develop methodologies to quantify 
and mitigate the impacts of hydropeaking on river ecosystems. Policymakers should 
promote the implementation of adaptive management strategies for river systems 
affected by hydropeaking. This involves agreeing on monitoring and assessment 
programs that enable continuous evaluation of ecological impacts, identification of 
potential mitigation measures, and adaptive implementation of management actions 
based on monitoring results. It is essential to ensure that monitoring programs are 
adequately funded and have a long-term perspective.

A broader dialogue with actors beyond the purely energy perspective of hydropower, 
incorporating diverse dimensions and viewpoints into decisionmaking processes is 
therefore necessary.

• Policy recommendation: Establish platforms for multi-stakeholder engagement, 
including representatives from environmental organizations, indigenous 
communities, residents, and relevant government agencies. Encourage open and 
transparent discussions to address the social, economic, and environmental aspects 
of hydropower development. Policymakers should encourage collaboration between 
environmental agencies and power market operators to develop mechanisms that 
consider ecological factors in power generation and distribution.
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