Skip navigation
Journal article

DO3SE modelling of soil moisture to determine ozone flux to European forest trees

This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on stomatal conductance for a variety of forest tree species.

Read the paper  Open access

Citation

Büker, P., Morrissey, T., Briolat, A., Falk, R., Simpson, D., Tuovinen, J.-P., Alonso, R., Barth, S., Baumgarten, M., Grulke, N., Karlsson, P. E., King, J., Lagergren, F., Matyssek, R., Nunn, A., Ogaya, R., Peñuelas, J., Rhea, L., Schaub, M., Uddling (2012). DO3SE modelling of soil moisture to determine ozone flux to European forest trees. Atmospheric Chemistry and Physics 12:12, 5537-5562.

The DO3SE (Deposition of O3 for Stomatal Exchange) model is an established tool for estimating ozone (O3) deposition, stomatal flux and impacts to a variety of vegetation types across Europe. It has been embedded within the EMEP (European Monitoring and Evaluation Programme) photochemical model to provide a policy tool capable of relating the flux-based risk of vegetation damage to O3 precursor emission scenarios for use in policy formulation. A key limitation of regional flux-based risk assessments has been the assumption that soil water deficits are not limiting O3 flux due to the unavailability of evaluated methods for modelling soil water deficits and their influence on stomatal conductance (gsto), and subsequent O3 flux.

This paper describes the development and evaluation of a method to estimate soil moisture status and its influence on gsto for a variety of forest tree species. This DO3SE soil moisture module uses the Penman-Monteith energy balance method to drive water cycling through the soil-plant atmosphere system and empirical data describing gsto relationships with pre-dawn leaf water status to estimate the biological control of transpiration. We trial four different methods to estimate this biological control of the transpiration stream, which vary from simple methods that relate soil water content or potential directly to gsto, to more complex methods that incorporate hydraulic resistance and plant capacitance that control water flow through the plant system.

Read the article (external link to journal)

Read the paper

Open access

SEI authors

Read the paper
10.5194/acp-12-5537-2012 Open access
Topics and subtopics
Water : Water resources / Land : Forests
Related centres
SEI York
Regions
Europe

Design and development by Soapbox.