In the Peruvian Andes, water infiltration from tropical wetlands, called páramo, generates headwaters for downstream rivers. The hydrological processes of these wetlands are not well understood within the larger hydrological system, impeding efforts to mitigate the rapid environmental changes anticipated due to regional population growth and climate change.

This study constructed and calibrated a Water Evaluation and Planning (WEAP) system model for ecosystems with sparse data in the Quiroz-Chipillico watershed in the Piura region of Peru. The model simulates the impacts of possible changes within the hydrological system to assist decision-makers in strategizing about sustainable development for the region, especially the páramo. Using scenarios designed with stakeholder participation, the WEAP model for the Quiroz-Chipillico watershed examines river headflow production, reservoir water levels, and demand coverage for downstream users when the upstream páramo and its environs are subjected to changes of temperature, precipitation, and land use.

The model reveals that while temperature and precipitation changes can be expected to impact páramo water production, the anticipated land use changes will be a primary driver of hydrological responses in the páramo and subsequent changes downstream.